Abstract:
There is provided a linear vibrator, including: a fixed part providing an interior space having a predetermined size; at least one magnet disposed in the interior space and generating magnetic force; a vibration part including a coil facing the magnet and generating electromagnetic force through interaction with the magnet and a mass body; and an elastic member coupled to the fixed part and the vibration part to mediate vibrations of the vibration part and having a damping increasing portion attached to a predetermined region of a surface thereof.
Abstract:
There is provided an apparatus for compensating for deterioration in an active matrix organic light-emitting diode. An apparatus for compensating for deterioration in an active matrix organic light-emitting diode being operated by a pixel driving unit may include: a switching control unit being synchronized with an operation of the pixel driving unit to thereby generate a switching control signal in order to compensate for deterioration in a pixel; and a switch circuit unit connected between an anode of the active matrix organic light-emitting diode and a terminal of a deterioration compensation voltage, being turned on or off according to the switching control signal from the switching control unit, and supplying the deterioration compensation voltage to the anode of the active matrix organic light-emitting diode while being turned on.
Abstract:
The present invention provides a horizontal linear vibrator which can reduce the thickness but increase vibration strength while at the same time guaranteeing a sufficiently long lifetime and satisfactory responsivity. The horizontal linear vibrator includes a casing, a bracket, a vibration unit and springs. The casing defines an internal space therein. The bracket is disposed under the casing. A cylindrical coil is provided on the bracket. The vibration unit has a magnet, a yoke and a weight. The yoke contains the magnet therein and is open on the lower end thereof. The weight is coupled to the outer surface of the yoke. The springs are coupled to sidewall plates of the casing or the bracket. The springs elastically support the vibration unit to allow the vibration unit to vibrate in the horizontal direction.
Abstract:
Provided is an RF transceiver for a 77 GHz forward-looking radar sensor. The RF transceiver whose essential components use a Monolithic Microwave Integrated Circuit (MMIC) includes an IF terminal including a transmitter, a receiver, and an Automatic Gain Control (AGC) circuit, one transmitting antenna, and three receiving antennas.The heterodyne RF transceiver for a radar sensor includes; a transmitter for generating a transmission signal and emitting the generated signal to a transmitting antenna; a local oscillating portion for generating a local oscillation wave; a first mixer for up-mixing the transmission signal with the low frequency; a receiver for receiving a reception signal from a receiving antenna; a second mixer for down-mixing a mixing signal of the first mixer with the reception signal; and an RF portion for outputting a beat signal from a mixing signal of the second mixer and the local oscillation wave.In the RF transceiver, a heterodyne method using an intermediate frequency (IF) signal is applied, and one AGC circuit and three receiving antennas for enhancing receive sensitivity are used, so that the receive sensitivity is improved by 30 dB or more compared with a conventional RF transceiver using a homodyne method.
Abstract:
Provided is an organic pixel, which includes a semiconductor substrate including a pixel circuit, an interconnection layer having a first contact and a first electrode formed on a semiconductor substrate, and an organic photo-diode formed on the interconnection layer. For example, the organic photo-diode includes an insulation layer formed on the first electrode, a second electrode and a photo-electric conversion region formed between the first contact, the insulation layer and the second electrode. The photo-electric conversion region includes an electron donating organic material and an electron accepting organic material. The organic photo-diode may further include a second contact electrically connected to the first contact. The horizontal distance between the second contacts and the insulation layer may be less than or equal to a few micrometers, for example, 10 micrometers.
Abstract:
Provided is an organic pixel, which includes a semiconductor substrate including a pixel circuit, an interconnection layer having a first contact and a first electrode formed on a semiconductor substrate, and an organic photo-diode formed on the interconnection layer. For example, the organic photo-diode includes an insulation layer formed on the first electrode, a second electrode and a photo-electric conversion region formed between the first contact, the insulation layer and the second electrode. The photo-electric conversion region includes an electron donating organic material and an electron accepting organic material. The organic photo-diode may further include a second contact electrically connected to the first contact. The horizontal distance between the second contacts and the insulation layer may be less than or equal to a few micrometers, for example, 10 micrometers.
Abstract:
Pixels of image sensors are provided. The pixels may include a photo diode configured to accumulate photocharges generated therein corresponding to incident light during a first period, a storage diode configured to store photocharges accumulated in the photo diode and a storage gate configured to control transfer of the photocharges accumulated in the photo diode to the storage diode. The storage gate may include a vertical gate structure extending toward the photo diode.
Abstract:
An image sensor and an image sensing method are provided. The image sensor includes a semiconductor substrate; a photoelectric converter comprising a bias unit, which comprises a first electrode and a second electrode, and an organic photoelectric conversion layer, which selectively absorbs light and converts the light into electrons; a via contacting the second electrode to connect the photoelectric converter with the semiconductor substrate; a storage node configured to store electrons; a read-out unit to converts charge transferred from the storage node into an image signal; a pixel array comprising a plurality of pixels, each of which comprises an intermediate insulating layer; and an output circuit configured to read out the image signal from the pixel array. The quantity of light received by the organic photoelectric conversion layer is adjusted by a bias change of the bias unit.
Abstract:
An FPCB and a method of manufacturing the same, in which an electrical signal-conductive portion of the FPCB is subjected to little stress so as not to be broken by fatigue in spite of repeated bending of the FPCB, thereby increasing the lifetime of the FPCB.
Abstract:
Disclosed herein is an organic light emitting display. The organic light emitting display is configured to include: a first transistor that receives a data signal from a data line in response to a scan signal from a scan signal line; a first capacitor that is charged with voltage corresponding to the data signal; a driving transistor that controls driving current supplied from a first power supply by corresponding to a voltage value charged in the first capacitor; a second transistor that connects or blocks the driving current transmitted through the driving transistor in response to an emission control signal from an emission control line; an organic light emitting diode that is connected between the second transistor and a second power supply and generates light corresponding to the driving current supplied from the driving transistor; and a reverse bias voltage applying module that reverses the polarity of the voltage supplied to the driving transistor simultaneously with applying reverse bias voltage to the organic light emitting diode in response to a reverse bias applying signal.