Abstract:
A wireless power transmitter for transmitting power by wireless to a terminal includes a power conversion unit and a power transmission control unit. The power conversion unit forms a wireless power signal for wireless power transfer using power supplied from a power supply unit. The power transmission control unit regulates a characteristic of the supplied power, based on orientation information of the terminal. A terminal includes a power receiving unit and a control unit. The power receiving unit receives a wireless power signal formed by a wireless power transmitter. The control unit detects whether or not an orientation of the terminal is changed while the wireless power signal is received, and transmits a control message for power regulation to the wireless power transmitter when the change in the orientation of the terminal is detected.
Abstract:
This specification provides a method for deciding a communication protocol between a wireless power transmitter and a wireless power receiver. To this end, a method for deciding a communication protocol by the wireless power receiver for data transmission or reception with the wireless power transmitter includes transmitting first communication protocol information indicating communication protocols supportable by the wireless power receiver itself to the wireless power transmitter, and deciding a communication protocol for the data transmission or data reception based on second communication protocol information, which indicates communication protocols selected based on the first communication protocol information, when the second communication protocol information is received from the wireless power transmitter.
Abstract:
A method in a wireless power transfer system can include, in response to a digital ping initiated by a wireless power transmitter, transmitting to the wireless power transmitter during a ping phase, a response signal. The method can further include transmitting, to the wireless power transmitter during a configuration phase, a configuration packet including first control information related to whether a wireless power receiver supports an authentication function to authenticate the wireless power transmitter; receiving, from the wireless power transmitter during a negotiation phase, a capability packet including second control information and a potential power value of the wireless power transmitter; and transmitting, to the wireless power transmitter during a power transfer phase, an authentication request message.
Abstract:
The present disclosure relates to a foreign object detection method of a wireless power transmitter, and the method may include acquiring the frequency characteristics of a current flowing through a coil within the wireless power transmitter, comparing a peak frequency with a resonant frequency, and detecting whether or not the foreign object is placed on the transmitter through the comparison. In addition, the present disclosure relates to an interference avoidance method of a wireless power transmitter, and the method may include connecting a head unit of an automobile in a wireless manner through a communication device, receiving a first signal for avoiding interference from the head unit to stop wireless charging or change a first frequency band to a second frequency band, and receiving a second signal from the head unit to resume the wireless charging or change to the first frequency band.
Abstract:
The present relates to a wireless power transmitter performing communication with a wireless power receiver, and a wireless power transfer method thereof. The wireless power transmitter includes a power conversion unit configured to transmit a wireless power signal transferred in a form of an energy field, such as an electric field, a magnetic field or an electromagnetic field, and a power transmission control unit configured to transfer power to the wireless power receiver using the wireless power signal, wherein the power transmission control unit is configured to control the power conversion unit to transmit a near-field communication (NFC) detection signal, other than the wireless power signal, when a preset condition is satisfied, and wherein the power transmission control unit controls the wireless conversion unit in a different manner according to whether or not a response signal to the NFC detection signal is detected.
Abstract:
This specification provides a method for deciding a communication protocol between a wireless power transmitter and a wireless power receiver. To this end, a method for deciding a communication protocol by the wireless power receiver for data transmission or reception with the wireless power transmitter includes transmitting first communication protocol information indicating communication protocols supportable by the wireless power receiver itself to the wireless power transmitter, and deciding a communication protocol for the data transmission or data reception based on second communication protocol information, which indicates communication protocols selected based on the first communication protocol information, when the second communication protocol information is received from the wireless power transmitter.
Abstract:
This specification provides a method for deciding a communication protocol between a wireless power transmitter and a wireless power receiver. To this end, a method for deciding a communication protocol by the wireless power receiver for data transmission or reception with the wireless power transmitter includes transmitting first communication protocol information indicating communication protocols supportable by the wireless power receiver itself to the wireless power transmitter, and deciding a communication protocol for the data transmission or data reception based on second communication protocol information, which indicates communication protocols selected based on the first communication protocol information, when the second communication protocol information is received from the wireless power transmitter.
Abstract:
A wireless power transfer method for a wireless power transfer apparatus using full and half-bridge inverter topologies includes detecting whether or not a wireless power receiver is present within a range of power being transferrable in a wireless manner, transmitting a detection signal to the wireless power receiver, receiving at least one of identification information and setting information from the wireless power receiver, receiving a control error packet from the wireless power receiver, and controlling an amount of power to be transferred by using the combination of a driving frequency, a duty cycle or a power signal phase to the full or half-bridge inverter.
Abstract:
A vehicle charge assistance device and a vehicle including the same are disclosed. The vehicle charge assistance device includes at least one camera mounted on a vehicle, an antenna to detect a magnetic field from a charging device, and a processor to control movement of the vehicle. The processor may generate a vehicle movement direction signal based on an object associated with the charging device in an image from the at least one camera and generate a guide signal to adjust a position of the vehicle based on the magnetic field after movement of the vehicle according to the vehicle movement direction signal. Consequently, it is possible to easily and conveniently move the vehicle to the charge system.
Abstract:
A wireless power transmitter configured to transfer power to a wireless power receiver including primary coils comprising first and second bottom coils placed adjacent to each other in a line and each consisting of a single layer of 11 turns and a top coil stacked on the first and second bottom coils and consisting of a single layer of 12 turns; a shielding; and a full-bridge inverter, wherein the first and second bottom coils and the top coil have a substantially rectangular frame structure with a through hole in the center, wherein the top coil lies on a plane surface in the middle between the first and second bottom coils, wherein a distance from the center of the first and second bottom coils to the center of the top coil is set to a range of 21 mm to 25 mm, wherein the first and second bottom coils have a height of 48 mm to 50 mm and a width of 43 mm to 45 mm, and the through hole in the first and second bottom coils has a height of 25 mm to 27 mm and a width of 21 mm to 23 mm, wherein the top coil has a height of 45 mm to 47 mm and a width of 48.5 mm to 50.5 mm, and the through hole in the top coil has a height of 20 mm to 22 mm and a width of 24.5 mm to 26.5 mm, wherein the first and second bottom coils and the top coil have a thickness of 0.9 mm to 1.3 mm, wherein an amount of power which is transferred is controlled based on an input voltage of the full-bridge inverter, wherein the input voltage has a range of 1 V to 18 V, wherein an operating frequency to control the amount of the power is within a range of 140 kHz to 150 kHz, wherein an assembly of the primary coils and the shielding has a self-inductance value of 11.3 μH, wherein the full-bridge invertor drives a series capacitance, and wherein a value of the series capacitance is 139 nF.