Abstract:
The present disclosure relates to a wireless power transfer method, a wireless power transmitter and a wireless charging system in a wireless power transfer field. That is, a wireless power transmitter configured to transfer power to a wireless power receiver in a wireless manner includes a power transfer unit configured to transmit power to the wireless power receiver in the wireless manner, a circuit unit having a plurality of capacitors electrically connected to the power transfer unit, and configured to support each of a plurality of frequencies by changing the electric connection of the capacitors, and a controller configured to detect a communication standard that the wireless power receiver supports, and control the electric connection of the capacitors such that the circuit unit operates at a frequency corresponding to the detected communication standard.
Abstract:
A wireless power transmitter configured to transfer power to a wireless power receiver including primary coils comprising first and second bottom coils placed adjacent to each other in a line and each consisting of a single layer of 11 turns and a top coil stacked on the first and second bottom coils and consisting of a single layer of 12 turns; a shielding; and a full-bridge inverter, wherein the first and second bottom coils and the top coil have a substantially rectangular frame structure with a through hole in the center, wherein the top coil lies on a plane surface in the middle between the first and second bottom coils, wherein a distance from the center of the first and second bottom coils to the center of the top coil is set to a range of 21 mm to 25 mm, wherein the first and second bottom coils have a height of 48 mm to 50 mm and a width of 43 mm to 45 mm, and the through hole in the first and second bottom coils has a height of 25 mm to 27 mm and a width of 21 mm to 23 mm, wherein the top coil has a height of 45 mm to 47 mm and a width of 48.5 mm to 50.5 mm, and the through hole in the top coil has a height of 20 mm to 22 mm and a width of 24.5 mm to 26.5 mm, wherein the first and second bottom coils and the top coil have a thickness of 0.9 mm to 1.3 mm, wherein an amount of power which is transferred is controlled based on an input voltage of the full-bridge inverter, wherein the input voltage has a range of 1 V to 18 V, wherein an operating frequency to control the amount of the power is within a range of 140 kHz to 150 kHz, wherein an assembly of the primary coils and the shielding has a self-inductance value of 11.3 μH, wherein the full-bridge invertor drives a series capacitance, and wherein a value of the series capacitance is 139 nF.
Abstract:
Provided is a method for controlling a mask apparatus. The method for controlling the mask apparatus includes measuring a current pressure value with respect to a mask by using a pressure sensor, comparing each of a preset atmospheric pressure maximum estimation and a preset and a preset atmospheric pressure minimum estimation to the current pressure value; updating the atmospheric pressure maximum estimation and the atmospheric pressure minimum estimation according to the comparison result, and controlling a voice output of a speaker based on a difference between the updated atmospheric pressure maximum estimation and the updated atmospheric pressure minimum estimation.
Abstract:
A wireless power transmitter that transfers power to a wireless power receiver includes a coil assembly comprising first and second bottom coils placed adjacent to each other in a line and each consisting of a single layer of 11 turns and a top coil stacked on the first and second bottom coils and consisting of a single layer of 12 turns; a series capacitance; a shielding extending to at least 2 mm beyond an outer boundary of the coil assembly, has a thickness of at least 1.5 mm and being composed of Mn—Zn; and a full-bridge inverter driving each of coils included in the coil assembly individually.
Abstract:
A wireless power transmission device is disclosed. The wireless power transmission device, which is a medium-power wireless power transmission device that transmits power to a low-power wireless power reception device or a medium-power wireless power reception device, includes: a power conversion unit that converts electrical energy to a power signal; and a communications and control unit that communicates with the wireless power reception device and controls power transfer, the power conversion unit including: an inverter that converts DC input to an AC waveform that drives a resonant circuit; a primary coil that creates a magnetic field; and a current sensor that monitors the current in the primary coil, wherein the inverter operates in a full-bridge mode that drives a plurality of bridges or in a half-bridge mode that drives a single bridge.
Abstract:
A wireless power transmitter is disclosed. The wireless power transmitter, which is capable of charging a plurality of wireless power receivers, includes: a plurality of coil cells; a main half-bridge inverter to which a main pulse signal is applied; a plurality of sub half-bridge inverters to which a first sub pulse signal or second sub pulse signal is applied; a current sensor that monitors the current through the coil cells; and a communications and control unit that controls the pulse signals applied to the main half-bridge inverter and sub half-bridge inverters and that communicates with the wireless power receivers, wherein the sub half-bridge inverters may be respectively connected to the coil cells.
Abstract:
The present disclosure relates to a wireless power transfer method, a wireless power transmitter and a wireless charging system in a wireless power transfer field. That is, a wireless power transmitter configured transfer power to a wireless power receiver in a wireless manner, the transmitter configured to a first coil configured to convert a current into a magnetic flux, a second coil configured to be adjacent to the first coil on a plane, a third coil configured to have a different shape from the first and second coils and have at least part thereof which overlaps the first and second coils, respectively, and a controller configured to determine a coil to be activated among the first, second and third coils.