Abstract:
A method for transmitting, by a user equipment, uplink control information, and a user equipment therefore are discussed. The method according to one embodiment includes determining respective first acknowledgement, negative acknowledgement or discontinuous transmission (ACK/NACK/DTX) responses for four downlink (DL) subframes of a first carrier and respective second ACK/NACK/DTX responses for four DL subframes of a second carrier; and transmitting ACK/NACK information representing the first and second ACK/NACK/DTX responses through the first or second carrier in an uplink (UL) subframe. For a same sequence of the first ACK/NACK/DTX responses for the four DL subframes of the first carrier, a same ACK/NACK information is transmitted when a sequence of the second ACK/NACK/DTX responses for the DL subframes of the second carrier is ‘ACK, ACK, ACK, ACK’ and when the sequence of the second ACK/NACK/DTX responses for the DL subframes of the second carrier is ‘ACK, DTX, DTX, DTX’.
Abstract:
A wireless communication system is disclosed. Disclosed herein are methods for transmitting a physical uplink control channel (PUCCH) signal in a wireless communication system, which includes setting transmit power for the PUCCH signal, and an apparatus thereof. If the PUCCH signal is transmitted on a subframe configured for a scheduling request (SR), the PUCCH signal includes one or more hybrid automatic repeat request acknowledgement (HARQ-ACK) bits and an SR bit. When determining the transmit power for the PUCCH, the SR bit is selectively considered depending on whether or not a transport block for an uplink shared channel (UL-SCH) is present in the subframe.
Abstract:
A method of configuring a measurement for a mobile terminal configured with a plurality of component carriers in a wireless communication system is discussed. The method is performed by a base station and includes transmitting, by the base station, configuration information to the mobile terminal. Further, when the transmitted configuration information includes an indication information for the measurement in an extension component carrier among the plurality of component carriers, the measurement in the extension component carrier is based on a channel state information reference signal (CSI-RS), and when the transmitted configuration information does not include the indication information for the measurement in the extension component carrier among the plurality of component carriers, the measurement in the extension component carrier is based on a cell specific reference signal (CRS).
Abstract:
A method and user equipment (UE) for transmitting ACK/NACK information, and a method and base station (BS) N for receiving ACK/NACK information are disclosed. If ACK/NACK repetition and spatial orthogonal-resource transmit diversity (SORTD) caused by 2 antenna ports are configured in the UE, the UE performs first ACK/NACK transmission using 2 PUCCH resources implicitly decided by an associated PDCCH. From the second transmission, the UE performs ACK/NACK transmission using 2 PUCCH resources explicitly assigned respectively for the two antenna ports.
Abstract:
The present invention relates to a method for receiving a downlink signal at a terminal in a wireless communication system. In particular, the method comprises: receiving a control channel to be transmitted to a specific subframe via a first carrier; and decoding a data channel corresponding to the control channel to be transmitted to the specific subframe via a second carrier, using at least one parameter included in the control channel, wherein information on the orthogonal frequency division multiplexing (OFDM) start symbol of data channels that are transmitted via each of at least one carrier allocated to the terminal is signaled through an upper layer.
Abstract:
The present invention relates to a method for receiving a downlink signal at a terminal in a wireless communication system. In particular, the method comprises: receiving a control channel to be transmitted to a specific subframe via a first carrier; and decoding a data channel corresponding to the control channel to be transmitted to the specific subframe via a second carrier, using at least one parameter included in the control channel, wherein information on the orthogonal frequency division multiplexing (OFDM) start symbol of data channels that are transmitted via each of at least one carrier allocated to the terminal is signaled through an upper layer.
Abstract:
The present disclosure relates to an operating method of a terminal for transceiving data to/from a base station in a system that supports a plurality of component carriers. The method includes receiving, from the base station, downlink control information (DCI) masked using a terminal identifier (cell-radio network temporary identifier (C-RNTI)) or a semi-persistent scheduling terminal identifier (SPS C-RNTI) through a physical downlink control channel (PDCCH); determining a component carrier for transceiving data to/from the base station; and transceiving data to/from the base station through the determined component carrier. The determining includes determining the component carrier which has received the PDCCH as a component carrier for receiving downlink data, and determining an uplink component carrier linked with the component carrier which has received the PDCCH as a component carrier for transmitting uplink data.