Abstract:
An electrochemical cell includes an anode including an anode catalyst, a cathode including a cathode catalyst, and a first set of proton-conducting metal nanoparticles between the anode and the cathode, such that the first set of proton-conducting metal nanoparticles is not in contact with the anode. The cathode may be a cathode assembly including a gas diffusion electrode, a cathode catalyst on the gas diffusion electrode, and proton-conducting metal nanoparticles on the cathode catalyst.
Abstract:
A fuel cell includes an anode including an anode catalyst, a cathode including a gas diffusion electrode and a cathode catalyst on the gas diffusion electrode, a channel that is contiguous with the anode, and a liquid including a fuel in the channel. The anode is in convective contact with the fuel, and the fuel cell has a fuel efficiency of at least 50%.
Abstract:
A fuel cell is described that includes (a) a first electrode; (b) a second electrode; and (c) a channel contiguous with at least a portion of the first and the second electrodes. When a first liquid is contacted with the first electrode, a second liquid is contacted with the second electrode, and the first and the second liquids flow through the channel, a multistream laminar flow is established between the first and the second liquids. Electronic devices containing such electrochemical cells and methods for their use are also described.
Abstract:
Branched or hyperbranched polymeric structures which contain at least one etherimide branch point, more specifically from stable A1Bn (where n≧2), AB, AA, and BB monomers; Am end-capping agents (where m=1); Bn cores (where n≧1) and combinations thereof; with controllable degrees of branching (DB=0-1), molecular architectures, end-group compositions, along with methods for their preparation.
Abstract:
A method for efficient fuel consumption comprises recharging batteries or operating a device carrying out a task, with an engine through an electrical connection. The method also includes monitoring at least one of (i) current in the electrical connection, (ii) voltage of the batteries, and (iii) length of time of the recharging or task, to determine if the recharging has reach a preselected endpoint or the task has been completed. The method further includes generating a signal through a communication link to cause the engine to stop operating by: (a) preventing operation of a spark plug, (b) preventing delivery of fuel to the engine, or (c) preventing delivery of oxygen to the engine.
Abstract:
A fuel cell includes a direct liquid fuel cell and a humidifier. The direct liquid fuel cell includes an air intake channel for providing oxidant to the fuel cell and an exhaust channel for exhausting depleted oxidant. The humidifier forms a fluid connection between the air intake channel and the exhaust channel.
Abstract:
A fuel cell comprises an anode comprising an anode catalyst, a cathode comprising a gas diffusion electrode and a cathode catalyst on the gas diffusion electrode, a microfluidic channel contiguous with the anode, and a liquid comprising fuel in the channel. The concentration of the fuel in the liquid is 0.05-0.5 M.
Abstract:
An electrochemical cell includes an anode, a cathode including a gas diffusion electrode and having first and second surfaces, an inlet for gaseous oxidant that is in contact with the first surface of the cathode, and a liquid electrolyte. Water generated at the cathode may be transported by osmosis into the liquid electrolyte. The fuel cell may produce a current density of 200 mA/cm2 without cathode flooding.
Abstract translation:电化学电池包括阳极,包括气体扩散电极的阴极,具有第一和第二表面,与阴极的第一表面接触的气态氧化剂的入口和液体电解质。 在阴极产生的水可以通过渗透输送到液体电解质中。 燃料电池可以产生200mA / cm 2的电流密度而不进行阴极驱动。
Abstract:
An electrochemical cell comprises a first electrode, a second electrode, a porous separator, between the first and second electrodes, a first channel, having an inlet and an outlet, and a second channel, having an inlet and an outlet. The first channel is contiguous with the first electrode and the porous separator, and the second channel is contiguous with the second electrode and the porous separator.
Abstract:
A method for transporting a gas to an electrode in a fuel cell is provided, whereby the gas is dissolved in an emulsion comprising a fluorinated hydrocarbon, a surfactant and an aqueous electrolyte with a pH of at most 4 or at least 9, and the emulsion is contacted with the electrode.