Abstract:
A Power Over Ethernet (PoE) system includes Power Sourcing Equipment (PSE) providing data and voltage over Ethernet wires to a Powered Device (PD). Instead of the conventional detection and classification routine being performed every time the system is powered up, the pertinent data to determine whether to apply PoE to the PD is stored in a memory in the PSE. The memory is accessed by a controller in the PSE when the PSE is powered up. Therefore, a time-consuming detection and classification routine does not have to be performed each time the system is powered up. The system is particularly useful in automobiles where the particular PDs and PSEs are predetermined. The PoE data may be obtained the first time the system is powered up or may be stored in the memory when the PSE is designed or fabricated.
Abstract:
A PoDL system includes a PSE connected via a wire pair to a PD, where differential data and DC power are transmitted over the same wire pair. Typically, low voltage/current detection and classification routines are required upon every powering up of the system to allow the PD to convey its PoDL requirements to the PSE. Various techniques are described that simplify or obviate such start-up routines or enable increased flexibility for the PoDL system. Such techniques include: ways to specify a particular PD operating voltage; ways to disable the PD's UVLO circuit during such routines; using opposite polarity voltages for the two routines; using voltage limiters or surge protectors to convey the PoDL information; detecting loop resistance; using a PSE memory to store previous results of the routines; and powering the PD communication circuit using the wire pair while the PD load is powered by an alternate power source.
Abstract:
In a method performed by a PoE system, a PSE provides data and operating voltage over Ethernet wires to a PD. Before the full PoE voltage is supplied, the PSE generates a low current signal received by the PD. A circuit in the PD, connected across its input terminals, has a characteristic analog response to the PSE signal corresponding to the PD's PoE requirements, such as whether the PD is a Type 1 or Type 2 PD. The circuit may be a certain value capacitor, zener diode, resistor, or other circuit. The PSE may generate a fixed current, fixed voltage, or time varying signal. Upon the PSE sensing the magnitude of the analog signal response at a particular time, the PSE associates the response with the PoE requirements of the PD. The PSE then applies the full PoE voltage in accordance with the PD's PoE requirements.
Abstract:
In a method performed by a PoE system, a PSE provides data and operating voltage over Ethernet wires to a PD. Before the full PoE voltage is supplied, the PSE generates a low current signal received by the PD. A circuit in the PD, connected across its input terminals, has a characteristic analog response to the PSE signal corresponding to the PD's PoE requirements, such as whether the PD is a Type 1 or Type 2 PD. The circuit may be a certain value capacitor, zener diode, resistor, or other circuit. The PSE may generate a fixed current, fixed voltage, or time varying signal. Upon the PSE sensing the magnitude of the analog signal response at a particular time, the PSE associates the response with the PoE requirements of the PD. The PSE then applies the full PoE voltage in accordance with the PD's PoE requirements.
Abstract:
A PoDL system includes a PSE connected via a wire pair to a PD, where differential data and DC power are transmitted over the same wire pair. Typically, low voltage/current detection and classification routines are required upon every powering up of the system to allow the PD to convey its PoDL requirements to the PSE. Various techniques are described that simplify or obviate such start-up routines or enable increased flexibility for the PoDL system. Such techniques include: ways to specify a particular PD operating voltage; ways to disable the PD's UVLO circuit during such routines; using opposite polarity voltages for the two routines; using voltage limiters or surge protectors to convey the PoDL information; detecting loop resistance; using a PSE memory to store previous results of the routines; and powering the PD communication circuit using the wire pair while the PD load is powered by an alternate power source.
Abstract:
A PSE includes a PSE controller that performs a handshaking routine with any PDs connected to the data wire pairs and spare wire pairs and applies power to the data wire pairs and spare wire pairs, via a switch, if certain conditions are met. Two different levels of currents are supplied to different terminals of the PSE controller that are connected to the data wire pairs and the spare wire pairs, and the resulting voltages are measured. The voltages are used to determine the PD impedances at the ends of the data wire pairs and spare wire pairs to determine whether a PD is connected to the data wire pair, whether another PD is connected to the spare wire pair, or whether a single PD is connected to both the data wire pairs and the spare wire pairs.
Abstract:
In a method performed by a Power Over Ethernet (PoE) system, Power Sourcing Equipment (PSE) provides data and voltage over Ethernet wires to a Powered Device (PD). The PD converts the PSE voltage to a regulated voltage by at least one DC-DC converter in the PD. A first load in the PD, such as a processor, operates in a standby mode during a standby period and draws a low current from the converter via a low current path. During this standby period, a high current load in the PD is disconnected and does not draw current. When the first load comes out of the standby mode and into an active mode, the converter supplies a relatively high current to the second load and the first load. In this way, the first load, if a processor, can be already booted up at the time the second load becomes active.
Abstract:
A PSE includes a PSE controller that performs a handshaking routine with any PDs connected to the data wire pairs and spare wire pairs and applies power to the data wire pairs and spare wire pairs, via a switch, if certain conditions are met. Two different levels of currents are supplied to different terminals of the PSE controller that are connected to the data wire pairs and the spare wire pairs, and the resulting voltages are measured. The voltages are used to determine the PD impedances at the ends of the data wire pairs and spare wire pairs to determine whether a PD is connected to the data wire pair, whether another PD is connected to the spare wire pair, or whether a single PD is connected to both the data wire pairs and the spare wire pairs.