Abstract:
In a method performed by a PoE system, a PSE is able to detect whether a PD is compatible for receiving power via four wire pairs in the standard Ethernet cable. The PSE provides a current limited voltage to a first and second pair of wires in the cable, during a detection phase, to detect a characteristic impedance of the PD. In the PSE, a first resistor is connected to a third wire pair and a second resistor is connected to a fourth wire pair. During the detection phase, the PSE detects the relative currents through the resistors. If the currents are the same, then the PSE knows the PD is able to receive power via the four wire pairs. The PSE then applies the full PoE voltage to the first and second wire pairs and connects the third and fourth wire pairs to a low voltage via a MOSFET.
Abstract:
In a PoE system in an automobile, Power Source Equipment (PSE) is connected to Powered Devices (PDs) to provide data and power via Ethernet wires. When the ignition switch is on, the full PSE voltage, such as 44 volts, is supplied to the PDs, and the voltage is regulated by the PDs to power one or more loads in the PD. During a standby mode, such as when the ignition switch is off, the PSE is controlled to output a lower voltage of, for example, 5 volts, and the voltage is regulated by the PDs to power the loads, such as processors, in a low power standby mode. The voltage regulator in the PD for the low power mode may be an efficient linear regulator, and the voltage regulator in the PD for the full voltage mode may be a switching regulator. Thus, there is improved efficiency.
Abstract:
A PoDL system includes a PSE supplying DC power and Ethernet data over a single twisted wire pair to a PD. Prior to coupling the DC voltage source to the wire pair, the PD needs to receive sufficient power to perform a detection and classification routine with the PSE to determine whether the PD is PoDL-compatible. The PSE has a low current, pull-up current source coupled to a first wire in the wire pair via a first inductor. This pull-up current charges a capacitor in the PD to a desired operating voltage, and the operating voltage is used to power a PD logic circuit. The PD logic circuit and a PSE logic circuit then control pull-down transistors to communicate detection and classification data via the first wire. After the handshaking phase, the PSE then applies the DC voltage source across the wire pair to power the PD for normal operation.
Abstract:
A Power Over Data Lines (PoDL) system includes Power Sourcing Equipment (PSE) supplying DC power and differential Ethernet data over a single twisted wire pair to a Powered Device (PD). Due to start-up perturbations, PD load current variations, and other causes, dV/dt noise is introduced in the power signal. Such noise may be misinterpreted as data unless mitigated somehow. Rather than increasing the values of the passive filtering components conventionally used for decoupling/coupling the power and data from/to the wire pair, active circuitry is provided in the PSE, PD, or both to limit dV/dt in the power signal. Such circuitry may be implemented on the same chip as the PSE controller or PD controller. Therefore, the sizes of the passive components in the decoupling/coupling networks may be reduced.
Abstract:
In a method performed by a PoE system, a PSE provides data and operating voltage over Ethernet wires to a PD. Before the full PoE voltage is supplied, the PSE generates a low current signal received by the PD. A circuit in the PD, connected across its input terminals, has a characteristic analog response to the PSE signal corresponding to the PD's PoE requirements, such as whether the PD is a Type 1 or Type 2 PD. The circuit may be a certain value capacitor, zener diode, resistor, or other circuit. The PSE may generate a fixed current, fixed voltage, or time varying signal. Upon the PSE sensing the magnitude of the analog signal response at a particular time, the PSE associates the response with the PoE requirements of the PD. The PSE then applies the full PoE voltage in accordance with the PD's PoE requirements.
Abstract:
A PoDL system includes a PSE connected via a wire pair to a PD, where differential data and DC power are transmitted over the same wire pair. Typically, low voltage/current detection and classification routines are required upon every powering up of the system to allow the PD to convey its PoDL requirements to the PSE. Various techniques are described that simplify or obviate such start-up routines or enable increased flexibility for the PoDL system. Such techniques include: ways to specify a particular PD operating voltage; ways to disable the PD's UVLO circuit during such routines; using opposite polarity voltages for the two routines; using voltage limiters or surge protectors to convey the PoDL information; detecting loop resistance; using a PSE memory to store previous results of the routines; and powering the PD communication circuit using the wire pair while the PD load is powered by an alternate power source.
Abstract:
In one embodiment, a PoDL system includes a PSE that uses high side and low side circuit breakers that uncouple the PSE voltage source from the wire pair in the event that a fault is detected. Faults may include a temporary short to ground, or to a battery voltage, or between the wires. The breakers perform an automatic retry operation in the event the fault has been removed. The voltages on the wires in the wire pair may be monitored to determine whether the voltages are within a normal range or indicative of a fault condition. Other embodiments are disclosed.
Abstract:
A Power Over Ethernet (PoE) system includes Power Sourcing Equipment (PSE) providing data and voltage over Ethernet wires to a Powered Device (PD). Instead of the conventional detection and classification routine being performed every time the system is powered up, the pertinent data to determine whether to apply PoE to the PD is stored in a memory in the PSE. The memory is accessed by a controller in the PSE when the PSE is powered up. Therefore, a time-consuming detection and classification routine does not have to be performed each time the system is powered up. The system is particularly useful in automobiles where the particular PDs and PSEs are predetermined. The PoE data may be obtained the first time the system is powered up or may be stored in the memory when the PSE is designed or fabricated.
Abstract:
Power Sourcing Equipment (PSE) provides a PoE supply voltage over data wires to a Powered Device (PD). A PSE controller controls a first FET that couples the PoE voltage to the data wire pairs and controls a second FET that couples the data wire pairs to the spare wire pairs. Upon powering up, the PSE controller keeps the two FETs open and performs a detection routine on any devices connected to the data pairs and spare pairs. If a PoE-compatible PD is detected as being coupled to the data pairs, the first switch is closed. If it is determined that the PoE voltage should also be coupled to the spare pairs, the second FET is also closed. The method prevents the PoE voltage from being applied to the spare pairs when the device connected to the spare pairs is not PoE compatible and maintains backwards compliance with IEEE PoE PDs.
Abstract:
A PoDL system includes a PSE connected via a wire pair to a PD, where differential data and DC power are transmitted over the same wire pair. Typically, low voltage/current detection and classification routines are required upon every powering up of the system to allow the PD to convey its PoDL requirements to the PSE. Various techniques are described that simplify or obviate such start-up routines or enable increased flexibility for the PoDL system. Such techniques include: ways to specify a particular PD operating voltage; ways to disable the PD's UVLO circuit during such routines; using opposite polarity voltages for the two routines; using voltage limiters or surge protectors to convey the PoDL information; detecting loop resistance; using a PSE memory to store previous results of the routines; and powering the PD communication circuit using the wire pair while the PD load is powered by an alternate power source.