Abstract:
In a circuit arrangement for deriving a signal dependent on the change direction of the incoming signal level in a radio receiver, controllable by a microcomputer, a comparator is provided outside the microcomputer to which a signal representing the respective signal strength and a signal generated by the microcomputer representing the signal strength at an earlier point in time can be supplied. An output signal from the comparator can be supplied to the microcomputer.
Abstract:
A new digital oscillator is described that can be synchronized with a broadcast digital input signal by iteratively rotating the phase of the complex oscillator signal by increasing or decreasing the components, depending upon the phase difference between the broadcast signal and the oscillator output signal.
Abstract:
Sample values of a digital signal of a first sample rate are supplied to a digital filter for conversion into a digital signal of a second sample rate. The coefficients of the digital filter are calculated by a processor from the ratio of the sample rates or are obtained by a read-only memory containing sets of coefficients for respective sample rate ratios for which the apparatus is usable. Filtered sample values are read out of the digital filter at the desired second sample rate. A buffer memory is used at the input of the digital filter and a regulator is provided to prevent fluctuations in the filling of the buffer memory from emptying or exceeding the capacity of the buffer memory.
Abstract:
A method and a circuitry for demodulating a digital frequency-modulated signal. After demodulating the digital frequency-modulated signal for generating the signal's amplitude and differential phase value &phgr;, the amplitude of the demodulated signal is compared with a constant at determined sampling times. The phase value of each sampling time is multiplied by a factor, the factor (c) being the product of the amplitude of the determined sampling time and the amplitude of a preceding sampling time, if the amplitude is less than the constant.
Abstract:
The method for obtaining the quality signal includes multiplying a digital multiplex signal (MPX) by respective reference carrier signals mutually phase shifted by 90.degree. to each other, but otherwise equal, to form a pair of mixed signals (Imr1,Imr2); multiplying the mixed signals (Imr1, Imr2) by respective correction signals (G38c,G38s) to form a pair of corrected mixed signal (Ims1,Ims2); separately multiplying the digital multiplex signal (MPX) by each of two reference pilot signals mutually shifted in phase by 90.degree. relative to each other to form respective derived signals useful for obtaining said correction signals (G38c,G38s); adding said corrected mixed signals (Ims1,Ims2) to each other; multiplying said mixed signals (Imr1,Imr2) by the respective correction signals (G38s,G38c) to form a pair of product signals; subtracting these product signals from each other to form a subtraction result and low-pass filtering the subtraction result to obtain a low-pass-filtered resultant signal from which the quality signal is derived.
Abstract:
A circuit arrangement for deriving the signal indicating noise in a received stereo multiplex signal, wherein the stereo multiplex signal is present as a digital signal with a first sampling rate that is substantially higher than twice the upper limit of the useful frequency range of the stereo multiplex signal, and the received stereo multiplex signal is passed through a low-pass filter. The low-pass filtered signal and the received stereo multiplex signal are subjected to decimation to a second sampling rate, which is higher than twice the upper limit of the useful frequency range of the stereo multiplex signal. The two stereo multiplex signals with the second sampling rate are subtracted from one another.
Abstract:
In a radio receiver with digital signal processing, a stereo multiplex signal received and the useful signals derived therefrom are processed in digital form at a first sampling rate. The subsidiary signals derived from the stereo multiplex signal are at least partly processed at a second sampling rate that is smaller than the first sampling rate. The sampling rate of the processed subsidiary signals are reduced to the first sampling rate with the processed subsidiary signals, acting as control signals with the first sampling rate, affecting the stereo multiplex signal and the useful signals.
Abstract:
In a circuit for a demodulator of a radio data signal in a radio receiver, the multiplex signal in digital form is mixed into the baseband, in two phase positions shifted 90.degree. with respect to each other, after band-pass filtering, together with a reference carrier generated at a sampling clock rate produced in the radio receiver, thus producing a first and a second mix signal. A first and a second auxiliary signal with, respectively, a sine waveform and a cosine waveform are produced. The first mix signal is multiplied by the first auxiliary signal, and the second mix signal by the second auxiliary signal. The results of these multiplications are added together, producing a first output signal. The first mix signal is multiplied by the second auxiliary signal, and the second mix signal by the first auxiliary signal, and the results subtracted from each other, thus producing a second output signal. The phase position of the auxiliary signals is controlled in such a manner that the first output signal corresponds to the radio data signal (RDS) shifted down into the baseband.
Abstract:
A disk drive is described, having a draw-in device for disk-shaped storage media, which prevents damage to the playoff area of such storage media. The draw-in device includes a threaded rod having an axis of rotation in the push-in direction of the storage medium. The course of thread of threaded rod acts together with the edge region of a storage medium inserted into the draw-in device so that the storage medium is drawn into the disk drive or pushed out of the disk drive by the rotation of the threaded rod, depending on the direction of rotation.
Abstract:
The circuit arrangement includes a first low-pass filter (2) for filtering an input signal (H3) proportional to the strength of a received radio signal; a second low-pass filter (3) for filtering the input signal (H3); a first weighting circuit (7) for weighting the first low-pass filter output signal with first coefficients to form a first weighted output signal; a circuit device for forming a masking signal for reducing stereo channel isolation from the first weighted output signal; a second weighting circuit (5) for forming a second weighted output signal weighted with second coefficients from the first low-pass filter output signal or the second low-pass filter output signal according to a switching signal (DD2) indicative of interference in the audio signals; a switch device (4) for selecting the first low-pass filter output signal for weighting in the second weighting circuit means (5) when no interference is indicated by the switching signal (DD2) and the second low-pass filter output signal for weighting in the second weighting circuit means (5) when interference is indicated by the switching signal (DD2); and a circuit device for forming a masking signal for damping the audio signal from the second weighted output signal.