Abstract:
A method and apparatus for video encoding to generate a partitioned bitstream without buffering transform coefficient and/or prediction data for subsequent coding units are disclosed. An encoder incorporating an embodiment according to the present invention receives first video parameters associated with a current coding unit, wherein no first video parameters associated with subsequent coding units are buffered. The encoder then encodes the first video parameters to generate a current first compressed data corresponding to the current coding unit. A first memory address in the first logic unit is determined and the encoder provides the current first compressed data at the first memory address in the first logic unit.
Abstract:
An exemplary data arrangement method for a picture includes at least the following steps: obtaining pixel data of a plurality of first N-bit pixels of the picture; and storing the obtained pixel data of the first N-bit pixels in a plurality of M-bit storage units of a first buffer based on a raster-scan order of the picture, wherein M and N are positive integers, and M is not divisible by N. Besides, at least one of the M-bit storage units is filled with part of the obtained pixel data of the first N-bit pixels, and the first N-bit pixels include at least one pixel divided into a first part stored in one of the M-bit storage units in the first buffer and a second part stored in another of the M-bit storage units in the first buffer.
Abstract:
A data processing apparatus has a mapper, a plurality of compressors, and an output interface. The mapper receives pixel data of a plurality of pixels of a picture, and splits the pixel data of the pixels of the picture into a plurality of pixel data groups. The compressors compress the pixel data groups and generate a plurality of compressed pixel data groups, respectively. The output interface packs the compressed pixel data groups into at least one output bitstream, and outputs the at least one output bitstream via a camera interface.
Abstract:
A method for performing image processing control and an associated apparatus are provided, where method may include the steps of: performing image coding on image information of at least one frame to generate encoded data of the at least one frame, wherein in the encoded data, a specific frame of the at least one frame includes a plurality of tiles, and each tile of the plurality of tiles includes a plurality of superblocks; and generating a bitstream carrying the encoded data of the at least one frame, wherein at least a partition type and a transform size of each superblock within a specific tile of the plurality of tiles are derivable from information corresponding to the specific tile within the encoded data, having no need to derive the partition type and the transform size from information corresponding to another tile of the plurality of tiles within the encoded data.
Abstract:
A method of binarizing an input symbol using a hybrid Truncated Rice/k-th order exp-Golomb binarization scheme with a Rice Parameter includes: determining a threshold; comparing the input symbol with the threshold; constructing a codeword using a Truncated Rice (TR) binarization process for the input symbol when a comparison result belongs to a first type of comparison result; and constructing a codeword with an initial prefix and a suffix for the input symbol when the comparison result belongs to a second type of comparison result; wherein the suffix is constructed using an exp-Golomb binarization process.
Abstract:
The invention is related to a method, a device, and a machine readable medium for image capture and selection. One of the disclosed embodiments of the invention is specifically related to an image selecting method performed by an image capturing device for selecting at least one image from a sequence of captured images. The method includes storing a plurality of the captured images in a buffer, wherein each of the buffered images has an interested region supposed to encompass an interested target; detecting intactness information describing intactness of the interested target as encompassed in the interested regions of a plurality of the buffered images; and selecting at least one of the buffered images based on the detected intactness information, wherein intactness indicating whether or to what extent the interested target encompassed in the interested region.
Abstract:
A method for generating a decoded value from a codeword which is binarized utilizing a concatenated unary/k-th order Exp-Golomb code includes: identifying a first portion of the codeword, a second portion of the codeword and a third portion of the codeword; generating an offset according to the second portion; decoding the third portion to generate an index value; and generating the decoded value by adding the offset and the index value.
Abstract:
A data arrangement method includes following steps: obtaining pixel data of a plurality of first N-bit pixels of a picture; and storing the obtained pixel data of the first N-bit pixels in a plurality of M-bit storage units of a first buffer according to a block-based scan order of the picture. The picture includes a plurality of data blocks, and the block-based scan order includes a raster-scan order for the data blocks. At least one of the M-bit storage units is filled with part of the obtained pixel data of the first N-bit pixels, M and N are positive integers, M is not divisible by N, and the first N-bit pixels include at least one pixel divided into a first part stored in one of the M-bit storage units in the first buffer and a second part stored in another of the M-bit storage units in the first buffer.
Abstract:
A video frame processing method, which comprises: (a) capturing at least two video frames via a multi-view camera system comprising a plurality of cameras; (b) recording timestamps for each the video frame; (c) determining a major camera and a first sub camera out of the multi-view camera system, based on the timestamps, wherein the major camera captures a major video sequence comprising at least one major video frame, the first sub camera captures a video sequence of first view comprising at least one video frame of first view; (d) generating a first reference video frame of first view according to one first reference major video frame of the major video frames, which is at a reference timestamp corresponding to the first reference video frame of first view, and according to at least one the video frame of first view surrounding the reference timestamp; and (e) generating a multi-view video sequence comprising a first multi-view video frame, wherein the first multi-view video frame is generated based on the first reference video frame of first view and the first reference major video frame.
Abstract:
One exemplary video coding method includes at least the following steps: utilizing a visual quality evaluation module for evaluating visual quality based on data involved in a coding loop; and referring to at least the evaluated visual quality for deciding a target configuration of at least one of a coding unit, a transform unit and a prediction unit. Another exemplary video coding method includes at least the following steps: utilizing a visual quality evaluation module for evaluating visual quality based on data involved in a coding loop; and referring to at least the evaluated visual quality for deciding a target coding parameter associated with at least one of a coding unit, a transform unit and a prediction unit in video coding.