Abstract:
Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
Abstract:
Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
Abstract:
An intracardiac ventricular pacemaker is configured to operate in in a selected one of an atrial-tracking ventricular pacing mode and a non-atrial tracking ventricular pacing mode. A control circuit of the pacemaker determines at least one motion signal metric from the motion signal, compares the at least one motion signal metric to pacing mode switching criteria, and, responsive to the pacing mode switching criteria being satisfied, switches from the selected one of the non-atrial tracking pacing mode and the atrial tracking pacing mode to the other one of the non-atrial tracking pacing mode and the atrial tracking pacing mode for controlling ventricular pacing pulses delivered by the pacemaker.
Abstract:
An intracardiac ventricular pacemaker having a motion sensor is configured to produce a motion signal including an atrial systolic event and a ventricular diastolic event indicating a passive ventricular filling phase, set a detection threshold to a first amplitude during an expected time interval of the ventricular diastolic event and to a second amplitude lower than the first amplitude after an expected time interval of the ventricular diastolic event. The pacemaker is configured to detect the atrial systolic event in response to the motion signal crossing the detection threshold and set an atrioventricular pacing interval in response to detecting the atrial systolic event.
Abstract:
An implantable medical device having a housing that encloses a pulse generator and a sensing module includes a housing-based cathode electrode electrically coupled to the pulse generator and to the sensing module. A sensing extension extending from the housing proximal end includes an anode electrode electrically coupled to the sensing module for sensing cardiac electrical signals. The sensing extension includes a flotation member that causes the sensing extension to extend away from the housing along a direction of flowing blood when the implantable medical device is deployed within a cardiovascular system of a patient.
Abstract:
An intracardiac ventricular pacemaker is configured to detect a ventricular diastolic event from a motion signal received by a pacemaker control circuit from a motion sensor. The control circuit starts an atrial refractory period having an expiration time set based on a time of the detection of the ventricular diastolic event. The control circuit detects an atrial systolic event from the motion signal after expiration of the atrial refractory period and controls a pulse generator of the pacemaker to deliver a pacing pulse to a ventricle of a patient's heart at a first atrioventricular pacing time interval after the atrial systolic event detection.
Abstract:
An intracardiac ventricular pacemaker having a motion sensor is configured to produce a motion signal including an atrial systolic event and a ventricular diastolic event indicating a passive ventricular filling phase, set a detection threshold to a first amplitude during an expected time interval of the ventricular diastolic event and to a second amplitude lower than the first amplitude after an expected time interval of the ventricular diastolic event. The pacemaker is configured to detect the atrial systolic event in response to the motion signal crossing the detection threshold and set an atrioventricular pacing interval in response to detecting the atrial systolic event.
Abstract:
A system and method for monitoring respiratory function that includes an acoustic sensing device sensing an acoustic waveform ocurring during one of an inspiration phase associated with at least one breath of a patient and an expiration phase associated with at least one breath of a patient, and a processor configured to determine changes in high frequency acoustic amplitude associated with the sensed acoustic waveform and, in response to the determined changes in high frequency acoustic amplitude, determine an indication of respiratory function.