Abstract:
There is provided an FPC for mounting components with an improved workability of fitting into other components. Both a second bend (23) and a third bend (25) are provided with a copper foil(s) (15). The copper foil (15) provided at each bend functions as a core material to be plastically transformed when the respective bends (23, 25) are formed and to prevent an FPC (9) from rebounding due to elastic recovery, thereby enabling the bends to retain their shape as desired. As shown in the figure, in case there are a plurality of bends, the copper foil (15) extends to be disposed at all the bends, thereby avoiding the deterioration in workability of assembly, which is invited due to the FPC (9) rebounding. Further, after assembling the FPC (9), a cover portion (20) does not rebound with time within the other components and does not shift off a predetermined position.
Abstract:
A plurality of minute lenticular elements made of a light-transmissible material and each having a substantially plano-convex cross section are formed on a major surface of a light conductive plate opposite to another major surface provided with a light reflection pattern, and are arranged radially with respect to a spot-like light source with their respective longitudinal directions oriented perpendicular to grooves of the light reflection pattern. Light rays guided in the lenticular element from its bottom surfaces are spread in a circumferential direction of its outer curved surfaces. A view field angle can be increased by the lenticular element in a direction tangential to the grooves improving view field angle distribution.
Abstract:
A spread illuminating apparatus comprises: a light conductive plate made of a light transmissible material; a bar-like lamp disposed along and close to an end face of the light conductive plate; a light reflection pattern having a stair-like configuration in section, and formed on a major face of the light conductive plate; and a light dispersive-reflection pattern comprising a plurality of, for example, convex surfaces continuous with each other, and formed on a major face of the light conductive plate opposite to the major face provided with the light reflection pattern.
Abstract:
A light conductive bar has a plurality of flat portions parallel to a side surface thereof facing a light conductive plate and formed on a side surface thereof opposite to the side surface and a plurality of inclined surfaces descending from one end surface facing a spot-like light source toward the other end surface, wherein the flat portions step down gradually from the one end surface to the other end surface. When light introduced into the light conductive bar from the one end surface is repeatedly reflected at the flat portions and the side surface facing the light conductive plate, angles of reflections thereat can stay larger than the critical angle because the flat portions are parallel to the side surface. Accordingly, the light can travel to the other end surface without leakage, thereby improving the luminance of the apparatus.
Abstract:
There is provided a spread illuminating apparatus to suppress the appearance of moirnull fringes. A light reflection pattern of a transparent substrate is composed of grooves of substantially triangular in section and flat portions adjacent thereto. The light reflection pattern is formed substantially parallel to the optical axis of a bar-like light source and the depth of the grooves increases gradually in proportion to the increase in distance from the light source. The interval of the adjacent grooves (the groove interval) is set to vary irregularly. Thereby, the relation between the interval of grooves and the interval of mosaic pattern of liquid crystal cells is not definite, and the appearance of moirnull pattern can be suppressed. The variation ratio of the groove interval is set to range 25% to 85% of the average groove interval
Abstract:
A spread illuminating apparatus includes a light converging element which has a refractive index profile in a direction orthogonal to two major surfaces of a light conductive plate, and which is disposed between at least one light source and one end surface of the light conductive plate. The light converging element comprises: a plurality of transparent resin films which have respective refractive indexes so as to constitute a refractive index gradation mirror-imaged with respect to the center plane of the light converging element, and which are layered over one another; and a plurality of light-transmittable adhesive layers each of which is sandwiched between two adjacent transparent resin films.
Abstract:
A spread illuminating apparatus includes a light conductive plate provided with a light entry face at its corner, having a spot-like light source disposed close to or in contact with the light entry face, and having a light reflection pattern formed on its major surface. The light reflection pattern comprises a plurality of arced grooves and is configured such that the grooves have their depths increasing with an increase in the distance from the light source, and that each of the grooves has its depth increasing with an increase in the light emission angle made by a line of a light emission direction with respect to a diagonal line from the light source. Thus, the light reflection pattern is adapted to reflect more light at an area farther from the light source and the diagonal line as well, thereby further improving uniformity in brightness all over the light conductive plate.
Abstract:
There is provided a spread illuminating apparatus which is improved in terms of compactness. A transparent substrate (2A) is composed of a transparent substrate proper (15), a curve (16) and an extension (17) which is plate-like, continuous with the curve (16) and substantially perpendicular to the transparent substrate proper (15). Light rays from a spot-like light source (6) enter the extension (17). Thereafter, the light rays enter the transparent substrate proper (15) due to the total internal reflection at the extension (17) and the curve (16), the reflection at a curved surface (16a) of the curve (16), and the like. Thus the light rays enter the transparent substrate proper (15) with the spot-like light source (6) not disposed on the same plane as the transparent substrate proper (15). Therefore, the spot-like light source (6) is subjected to reduced restrictions in arrangement, thereby enabling the spot-like light source (6) to be disposed on the same electric wiring board (14) together with other electronic components, whereby the apparatus can be made compact.
Abstract:
A cover portion 20 which covers a spot-like light source 8 is provided on the printed circuit board (FPC) 9, thereby giving electrical insulation from the surrounding. Therefore, even if a metallic frame is disposed close to the spot-like light source 8, the spot-like light source 8 is prevented surely from shortcircuiting with the metallic frame. Since the cover portion 20 covers the surrounding of the spot-like light source 8, light leakage from the spot-light like source 8 can be minimized and light emitted from the spot-like light source 8 can be used efficiently.