Abstract:
An electrical wiring system/method implementing transient voltage suppression is disclosed. The system/method incorporates HOT, NEUTRAL, GROUND wiring in conjunction with a series drop resistor (SDR) on the HOT conductor that supplies current to the load device. Parallel shunting metal oxide varistors (MOVs) are used in conjunction with corresponding shunt diode rectifiers (SDRs) to suppress transients on the HOT conductor to either the GROUND conductor and/or NEUTRAL conductor. The parallel shunting MOV/SDR pairs may be integrated into a singular structure that is encapsulated in an insulating material to permit implementation of the transient protection wiring system/method into electrical loads and common power distribution equipment such as electrical outlets and power strips.
Abstract:
The present invention provides gas tubing that is resistant to electrical insult. The gas tubing includes an inner Corrugated Stainless Steel Tubing (CSST) and a shunt that surrounds the CSST. This shunt may be a mesh or solid metal layer and is conterminous with the CSST and has a higher conductivity than the CSST. The shunt mesh increases the charging rate of the gas tubing in the presence of electric charge above that of CSST, thereby reducing electrical potential differences between the gas tubing and adjacent structures in the presence of electric charge. This reduced potential difference reduces the likelihood of electrical arcing from such adjacent structures to the gas tubing during events such as lightning strike.
Abstract:
The present invention provides a device for preventing electrically induced gas fires involving gas tubing such as Corrugated Stainless Steel Tubing (CSST) and gas appliance connectors (GAC). Connectors for coupling the gas tubing to gas lines and appliances are affixed at each end of the tubing. These connectors are made of a conductive material. Conductive wire (i.e. mesh surrounding the gas tubing) provides a direct electrical contact between the end connectors. If an electrical charge goes to ground via the gas tubing, such as from a lightning strike or an appliance short, the current is carried between the end connectors by the conductive wire instead of the gas tubing itself, thereby preventing damage to the gas tubing from the current.
Abstract:
A dental irrigation device for heating a solution and mixing solutes within the solution. The present invention utilizes an oscillator and inductive coil to heat and/or mix the solution. A pump then delivers the heated and mixed pressurized solution from a basin ultimately into a dispenser.
Abstract:
A beverage mixing system/method allowing faster mixing/blending of frozen beverages is disclosed. The system/method in various embodiments utilizes inductive coupling to introduce heat into the frozen beverage during the mixing/blending process via a rotating driveshaft and attached mechanical agitator to speed the mixing/blending process. Exemplary embodiments may be configured to magnetically induce heat into the driveshaft and/or mechanical agitator mixing blade to affect this mixing/blending performance improvement. This heating effect may be augmented via the use of high power LED arrays aimed into the frozen slurry to provide additional heat input. The system/method may be applied with particular advantage to the mixing of ice cream type beverages and other viscous beverage products.
Abstract:
The present invention provides an apparatus for a threaded plumbing connector to electrically ground pipes. The apparatus includes wire terminal block(s), connecting the threaded plumbing connector body to a wire or other conductive material. In the event that a pipe becomes electrically energized, the grounding connection of the threaded plumbing connector would be able to shunt the electrical current away from the pipes and reduce the risk of fire.
Abstract:
The improved dryer output exhaust duct of the present invention is comprised of a nonconductive, high temperature polymer to form a dielectric exhaust output duct. The dielectric dryer exhaust duct prevents the travelling of electrical current from an inadvertently energized dryer chassis to the attached flexible ducting and thus prevents the ducting from overheating or melting from the electrical current or igniting flammable materials nearby or contained within the ducting.
Abstract:
A method and apparatus for detecting and preventing electrically induced fires in a gas tubing systems constructed of Corrugated Stainless Steel Tubing (CSST) and Gas Appliance Connectors (GAC). The system of the present invention may include one or more energy detection schemes to detect electrical energy surges on the gas line. When such a surge is detected, the control circuitry of the present invention causes an electric two-way main gas valve to de-energize into a position wherein the flow of gas from a gas feeder pipe to the gas tubing system is blocked and residual gas pressure in the gas tubing system is automatically vented to the atmosphere.
Abstract:
A method and apparatus for detecting and preventing electrically induced fires in a gas tubing systems constructed of Corrugated Stainless Steel Tubing (CSST) and Gas Appliance Connectors (GAC). The system of the present invention may include one or more energy detection schemes to detect electrical energy surges on the gas line. When such a surge is detected, the control circuitry of the present invention causes an electric main gas valve de-energize into a closed position. In addition, the system of the present invention further includes a residual gas dispersal system that automatically vents the residual downstream gas pressure remaining in the gas tubing system after the closure of the main gas valve.
Abstract:
The present invention provides failsafe system for cutting gas off gas flow in response to electrical insults that may damage gas tubing. The invention uses an inductive sensor to detect electrical surges along a ground conductor that provides a ground path for gas tubing. The sensor is coupled to control circuitry that provides a continuous pulse train to a solenoid that forms part of a valve that controls gas flow through the gas tubing. The pulse train from the control circuitry keeps the valve open. In response to an electrical surge detected along the ground conductor (e.g., from lightning), the control circuitry stops the pulse train to the solenoid, which in turn causes the gas valve to close and stop the gas flow through the tubing.