摘要:
A simplified manufacturing process and the resultant bifacial solar cell (BSC) are provided, the simplified manufacturing process reducing manufacturing costs. The BSC includes an active region located on the front surface of the substrate, formed for example by a phosphorous diffusion step. The back surface includes a doped region, the doped region having the same conductivity as the substrate but with a higher doping level. Contact grids are formed, for example by screen printing. Front junction isolation is accomplished using a laser scribe.
摘要:
A polarization resistant solar cell using an oxygen-rich interface layer is provided. The oxygen-rich interface layer may be comprised of SiOxNy, which may have a graded profile that varies between oxygen-rich proximate to the solar cell to nitrogen-rich distal to the solar cell. A silicon oxide passivation layer may be interposed between the solar cell and the SiOxNy graded dielectric layer. The graded SiOxNy dielectric layer may be replaced with a non-graded SiOxNy dielectric layer and a SiN AR coating.
摘要翻译:提供了使用富氧界面层的耐极化太阳能电池。 富氧界面层可以由SiO x N y组成,其可以具有在太阳能电池附近的富含氧和太阳能电池远端富氮之间变化的分级分布。 氧化硅钝化层可以介于太阳能电池和SiO x N y梯度电介质层之间。 分级的SiO x N y介电层可以用非梯度的SiO x N y电介质层和SiN-AR涂层代替。
摘要:
A polarization resistant solar cell using an oxygen-rich interface layer is provided. The oxygen-rich interface layer may be comprised of SiOxNy, which may have a graded profile that varies between oxygen-rich proximate to the solar cell to nitrogen-rich distal to the solar cell. A silicon oxide passivation layer may be interposed between the solar cell and the SiOxNy graded dielectric layer. The graded SiOxNy dielectric layer may be replaced with a non-graded SiOxNy dielectric layer and a SiN AR coating.
摘要翻译:提供了使用富氧界面层的耐极化太阳能电池。 富氧界面层可以由SiO x N y组成,其可以具有在太阳能电池附近的富含氧和太阳能电池远端富氮之间变化的分级分布。 氧化硅钝化层可以介于太阳能电池和SiO x N y梯度电介质层之间。 分级的SiO x N y介电层可以用非梯度的SiO x N y电介质层和SiN-AR涂层代替。
摘要:
A polarization resistant solar cell is provided. The solar cell uses a dual layer dielectric stack disposed on the front surface of the cell. The dielectric stack consists of a passivation layer disposed directly on the front cell surface and comprised of either SiOx or SiON, and an outer AR coating comprised of SiCN.