摘要:
An air conditioning system for a vehicle that is driven by a vehicular power source. The system has a compressor selectively operable by the vehicular power source and an electric motor. The electric motor is used as a drive force of the compressor when the vehicular power source is in a non-operative state. The compressor compresses refrigerant gas introduced into a suction chamber from an external refrigerant circuit. A displacement of the compressor is variable, based on a differential pressure. The compressor has a control valve that is disposed on a refrigerant passage communicating with the crank chamber. The control valve has a valve plunger for changing an opening size of the control valve to adjust pressure in the crank chamber. The air conditioning system comprises pressure sensing member, actuator, and controller. The pressure sensing member is disposed in the control valve and applies biasing force to the plunger based on pressure in the external circuit. The biasing force is applied to cancel change of the pressure in the external circuit. The actuator is disposed in the control valve and applies reverse force against the biasing force to the plunger. The plunger is moved to increase the displacement by the reverse force. The controller controls the actuator to increase the reverse force in steps by a magnitude that is small enough that the electric motor is able to stably drive the compressor.
摘要:
A vehicle air conditioning apparatus includes a refrigerant circuit. The air conditioning apparatus is driven by an engine. The air conditioning apparatus includes a variable displacement compressor. An external information detector detects external information used for the air conditioning. An E/G-ECU controls the output of the power source. An A/C-ECU is connected to the E/G-ECU via a communication line. The A/C-ECU computes a target value of the displacement of the compressor based on the external information. The A/C-ECU sends the computed target value to the E/G-ECU. The E/G-ECU controls the displacement of the compressor based on the computed target value. This is capable of rapidly changing the discharge displacement in accordance with the driving condition of the engine.
摘要翻译:车辆空调装置包括制冷剂回路。 空调装置由发动机驱动。 空调装置包括可变排量压缩机。 外部信息检测器检测用于空调的外部信息。 E / G-ECU控制电源的输出。 A / C-ECU通过通信线路连接到E / G-ECU。 A / C-ECU基于外部信息计算压缩机的位移的目标值。 A / C-ECU将计算出的目标值发送到E / G-ECU。 E / G-ECU基于计算出的目标值控制压缩机的排量。 这能够根据发动机的驱动条件快速地改变排出位移。
摘要:
An electric compressor includes a gas compression mechanism accommodated in a compressor housing and an electric motor for driving the compression mechanism. A circuit cover is joined to the outer surface of the compressor housing. The compressor housing and the circuit cover define an accommodating space. A motor driving circuit or driving the electric motor is accommodated in the accommodating space. The motor driving circuit is attached to the circuit cover. Accordingly, the compressor reduces manufacturing costs.
摘要:
A controller normally supplies current the magnitude of which corresponds to a required cooling performance of a refrigeration circuit to a displacement control valve. As a result the compressor displacement is adjusted in accordance with the required cooling performance (usual displacement control). When a vehicle is quickly accelerated, the controller temporarily eliminates the current value to the control valve to minimize the compressor displacement (displacement limiting control). When the control is switched from the displacement limiting control to the usual In displacement control, the controller changes the current value from zero to a target value, which corresponds to the required cooling performance, taking a predetermined restoration time. For an initial period of the restoration period, the current value is set greater than a corresponding value on a direct proportional line, which represents a constant rate of change from zero to the target value. As a result, the control is smoothly and quickly switched from the displacement limiting control to the usual displacement control.
摘要:
An electromagnetic control valve is provided. The control stability of the electromagnetic control valve is improved because: (1) one end of the guide pin is forced into and then secured in a hole formed in the center of the coil guide so that the plunger moves in the center of the suction portion; (2) one end of the connecting rod is forced into and then secured in a hole formed in the center of the plunger, and a guide portion for guiding the connecting rod is provided in the center of the upper main body; or (3) the connecting rod is forced into and then secured in a hole formed in the center of the plunger, and a first guide portion for guiding the connecting rod is provided at the lower end of the coil guide and/or a second guide portion for guiding the connecting rod is provided at the lower end of the upper main body.
摘要:
A variable displacement refrigerant compressor has a tilting swash plate connected to a number of pistons. The pistons are located in a cylinder block. The cylinder has a front end surface that faces the swash plate. A central bore is formed in the cylinder block to hold a drive shaft, a radial bearing, and a movable spool, or shut-off member, which regulates gas flow within the compressor. An area of the front end of the cylinder block surrounding the central bore is located forward of the axial center of the bearing.
摘要:
A compressor having a compression mechanism within a housing for compressing a refrigerant gas according to the rotation of a rotary shaft operatively connected to an external power source. A pulley is mounted on the rotary shaft and located on one side of the housing for transmitting power from the external power source to the shaft. A fan sends air to the outer surface of the housing by rotating with the pulley. Heat transferring fins are provided on the housing adjacent to the fan.
摘要:
An electromagnetic valve (32) opens and closes a pressurizing passage (31). When the pressurizing passage (31) is opened, a swash plate (15) mounted on a rotary shaft (9) inclines toward the minimum inclination. As the swash plate (15) inclines toward the minimum inclination, the swash plate (15) counteracts the spring force of a suction passage opening spring (24) and pushes a transmitting cylinder (28) and a shutter (21). The shutter (21) abuts against a positioning surface (27) when the swash plate inclination corresponds to a minimum inclination and disconnects a suction passage (26) from a suction chamber (3a). The disconnection impedes refrigerant circulation in the external refrigerant circuit (35). A refrigerant circulation controlling circuit (42) energizes the electromagnetic valve (32) and opens the pressurizing passage (31) for a certain time period starting from when a drive electric source (14) is activated.
摘要:
A swash plate type compressor is connected with an external refrigerant gas circuit. A device accommodated in the compressor disconnects the external circuit with the suction chamber when the swash plate is at the minimum inclining angle. A pressure decreasing passage creates the connection between the crank chamber and the suction chamber to decrease the pressure in the crank chamber. This passage releases the pressure in the crank chamber to the suction chamber when the pressure in the crank chamber is greater than the pressure in the suction chamber so that the swash plate is inclined toward the maximum inclining angle. An adjusting device adjusts the pressure in the pressure decreasing passage so that the pressure decreasing passage is opened to a greater degree when the swash plate is at the maximum inclining angle than when the swash plate is between the maximum and minimum inclining angles.
摘要:
A compressor has a swash plate located in a crank chamber and tiltably mounted on a drive shaft. A piston is operably coupled to the swash plate and is located in a cylinder bore. The inclination of the swash plate is varied according to the difference between the pressure in the crank chamber and the pressure in the cylinder bore. The compressor has a supply passage for connecting a discharge chamber with the crank chamber. A control valve is located in the supply passage for adjusting the amount of the gas introduced into the crank chamber from the discharge chamber through the supply passage. The control valve includes a valve body and a solenoid selectively excited and de-excited based on a supply of electric current from a driver to actuate the valve body. The solenoid generates a counter-electromotive force based on the self-inductance of the solenoid when the solenoid is de-excited. A protector, such as a diode, is connected in parallel with the solenoid. The protector passes the current based on the counter-electromotive force therethrough to prevent the current based on the counter-electromotive force from being supplied to the driver.