Abstract:
Apparatus having corresponding computer programs comprise: a code generator adapted to generate a transmitter identification block, wherein the transmitter identification block comprises 32 rows and 82 columns, wherein the first 66 symbols in each of the rows comprises a cyclically-extended 63-chip pseudonoise code that is selectively polarity-inverted according to a respective phase of a 32-chip Walsh code, and wherein each of the last 16 columns comprises a parity-extended 31-chip Gold code that is selectively polarity-inverted according to a respective phase of a 16-chip Walsh code; and a code inserter adapted to insert each of the rows into the reserved block of a respective one of 32 consecutive field synchronization segments in an Advanced Television Systems Committee (ATSC) television signal prior to transmission of the ATSC television signal.
Abstract:
The present invention provides a method, system, and apparatus for rapidly acquiring and correlating synchronization codes for a mobile receiver used for position determination purposes. The receiver uses a processing unit to perform the correlation functions. The processing unit first computes, for each segment interval of the received signal, the phase offset of that interval. Each interval is appropriately adjusted to account for the computed phase offset. The processing unit then accumulates the phase-adjusted segment intervals, and may down-convert the accumulated signal to a baseband format from an intermediate frequency. The processing unit then correlates the accumulated signal with a reference signal to produce a correlation peak, from which the time delay of a synchronization code within the interval can be calculated. Ultimately, the receiver's position can be determined based on the calculated time delay.
Abstract:
Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Genetic material from the target individual is acquired, amplified and the genetic data is measured using known methods. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment of the invention, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment of the invention, the chromosome copy number can be determined from the measured genetic data of a single or small number of cells, with or without genetic information from one or both parents. In another embodiment of the invention, these determinations are made for the purpose of embryo selection in the context of in-vitro fertilization. In another embodiment of the invention, the genetic data can be reconstructed for the purposes of making phenotypic predictions.
Abstract:
Apparatus to determine the position of a user terminal, the apparatus having corresponding methods and computer-readable media, comprises a receiver to receive, at the user terminal, a wireless orthogonal frequency-division multiplexing (OFDM) signal comprising a scattered pilot signal; and a processor to determine a pseudo-range based on the scattered pilot signal; wherein a position of the user terminal is determined based on the pseudo-range and a location of a transmitter of the OFDM signal.
Abstract:
An apparatus having a corresponding computer program comprises a receiver to receive one or more wireless signals; and a measurement circuit to obtain measurements of one or more characteristics of each of the wireless signals; wherein one or more of a plurality of possible locations of the apparatus are selected based on the measurements and a plurality of associations each associating one of the possible locations with expected values for the measurements for the one of the possible locations.
Abstract:
Systems and methods for predicting likely phenotypic outcomes using mathematical models and given genetic, phenotypic and/or clinical data of an individual, and also relevant aggregated medical data consisting of genotypic, phenotypic, and/or clinical data from germane patient subpopulations are provided. In one embodiment, support vector machines may be used to create non-linear models, or LASSO techniques may be used to create linear models, both of which are trained using convex optimization techniques to make the models sparse. In another embodiment, phenotypic predictions may be made using models based on contingency tables for genetic data that can be constructed from data available in genomic databases.
Abstract:
The present invention provides a method, system, and apparatus for estimating a pilot frequency of a television broadcast signal at a receiver. In one aspect, the receiver constitutes a mobile device that uses the estimated pilot frequency to facilitate the determination of position location of the mobile device. The receiver includes a processor which estimates the pilot frequency by computing a baseband version of the pilot signal relative to a reference frequency, defining time-shifted segments for the pilot signal and its baseband version, computing phase correction terms using the pilot signal and its baseband version, phase correcting each received signal segment, and estimating the pilot frequency. In another aspect of the invention, a phase-locked-loop is used to track the phase of the incoming pilot signal. The loop filter and/or the phase of the numerically controlled oscillator is scaled to account for the non-integer nature of samples within the received segments.
Abstract:
An apparatus having a corresponding method and computer program comprises a front end to receive an orthogonal frequency division modulation (OFDM) signal comprising a plurality of OFDM symbols each comprising N samples and a cyclic prefix comprising M of the N samples, wherein M
Abstract:
An apparatus and method for determining the position of a user terminal comprise an antenna subsystem which is able to receive signals of GPS and TV, a receiver front end which converts the frequency of the incident signals and filters out unwanted signals so that the desired signals can be sampled, a digital processing component which accommodates the imperfections of the front end and converts the measured signals into a position information. The apparatus is capable of receiving at the user terminal, broadcast television signals from television signal transmitters; determining a first set of pseudo-ranges between the user terminal and the television signal transmitters based on a known component of the broadcast television signals; receiving at the user terminal global positioning signals from a global positioning satellites; determining a second set of pseudo-ranges between the user terminal and the global positioning satellites based on the global positioning signals; and determining a position of the user terminal based on the first and second sets of pseudo-ranges, locations of the television signal transmitters, and locations of the global positioning satellites.
Abstract:
A method, apparatus, and computer-readable media for determining the position of a user terminal comprises generating a correlation reference signal based on known characteristics of a chirp-type signal present in a broadcast analog television signal; receiving, at the user terminal, a broadcast analog television signal comprising the chirp-type signal; and correlating the broadcast analog television signal with the correlation reference signal, thereby producing a pseudorange; and wherein the location of the user terminal is determined based on the pseudorange and a location of the transmitter of the broadcast analog television signal.