Abstract:
A wireless communication device is provided with a first radio module and a second radio module inside. The first radio module performs wireless transceiving according to a plurality of first traffic patterns which each indicates allocations of a plurality of first slots for a plurality of forthcoming transmitting or receiving operations, respectively. The second radio module determines an indicator indicating at least one of a plurality of second traffic patterns which each indicates allocations of a plurality of second slots for a plurality of forthcoming transmitting or receiving operations, respectively. Particularly, one or more allocations of the second slots are selectively determined according to the first traffic patterns. Also, the second radio module transmits the indicator to a peer communication device, so that the peer communication device performs transmitting or receiving operations according to the indicator.
Abstract:
A wireless communication device, serving as a destination node of one or more data packets propagated in a wireless mesh network, is provided. The wireless communication device includes a wireless transceiver and a controller. The wireless transceiver performs wireless transmission and reception in the wireless mesh network. The controller selects a first relay node to serve as a friend node for the wireless communication device and to store the data packets which arrive when the wireless communication device operates in a sleep mode, and broadcast, via the wireless transceiver, a notification message in the wireless mesh network when selecting a second relay node to serve as the friend node for the wireless communication device.
Abstract:
A method for coordinating transmission and reception operations of a first and a second radio module in a communications apparatus, the first radio module communicating with a first communications device in a first protocol to provide a first wireless communications service and the second radio module communicating with a second communications device in a second protocol to provide a second wireless communications service. The method includes estimating, by the first radio module, time remaining for the second radio module; receiving, by the second radio module, information regarding the estimated remaining time from the first radio module; determining, by the second radio module, whether time required for the operations of the second radio module exceeds the estimated remaining time; and scheduling, by the second radio module, operations of the second radio module according to the information regarding the estimated remaining time received from the first radio module.
Abstract:
A mobile communications device supporting operation on a first wireless technology and a second wireless technology with a wireless module and a controller module is provided. The wireless module performs wireless transceiving to and from a first base station of a first wireless technology and a second base station of a second wireless technology. The controller module transmits a control message prior to the starting of a uplink transmission period of the first wireless technology via the wireless module to occupy the uplink transmission period of the first wireless technology so as to allow transmission of signals of the second wireless technology during the uplink transmission period of the first wireless technology, wherein the first wireless technology is a long term evolution (LTE) technology and the second wireless technology is a WiFi technology.
Abstract:
A wireless communication device has a first wireless communication module coupled to a second wireless communication module via only one wire. The first wireless communication module is configured to performing a first wireless transceiving and to send a first request to the second wireless communication module indicating a remaining period of time to perform a second wireless transceiving, during which the first wireless communication module is not required to perform wireless transceiving. The second wireless communication module is configured to perform a second wireless transceiving, the second wireless communication module further configured to send a first response to the first request by indicating acceptance of the request if a status of the second wireless communication module is in an active mode, else by indicating that the first request is not accepted if the status of the second wireless communication module is in a sleep mode.
Abstract:
A method for preventing in device coexistence (IDC) interference of a communications apparatus including at least a first radio module providing a first wireless communications service in a first wireless network in compliance with a first protocol and a second radio module providing a second wireless communications service in a second wireless network in compliance with a second protocol, the method includes: determining whether a protection scheme for preventing IDC interference is to be performed; determining a predetermined time to activate the protection scheme when the protection scheme is determined to be performed; and transmitting a predetermined message to the second wireless network at the predetermined time to activate the protection scheme.
Abstract:
A communication apparatus is provided. A first radio module communicates with a first communications device in compliance with a first protocol to provide a first wireless communications service. A second radio module communicates with a second communications device in compliance with a second protocol to provide a second wireless communications service. The first radio module further estimates time remaining for the second radio module before a next operation of the first radio module and transmits information regarding the estimated remaining time to the second radio module. The second radio module further schedules operations of the second radio module according to the information regarding the estimated remaining time received from the first radio module.