Abstract:
A wireless communication device has a first wireless communication module coupled to a second wireless communication module via only one wire. The first wireless communication module is configured to performing a first wireless transceiving and to send a first request to the second wireless communication module indicating a remaining period of time to perform a second wireless transceiving, during which the first wireless communication module is not required to perform wireless transceiving. The second wireless communication module is configured to perform a second wireless transceiving, the second wireless communication module further configured to send a first response to the first request by indicating acceptance of the request if a status of the second wireless communication module is in an active mode, else by indicating that the first request is not accepted if the status of the second wireless communication module is in a sleep mode.
Abstract:
A communication apparatus is provided. An RF module receives an RF signal. An analog down converter down converts the RF signal in response to a band select signal to generate a first converted signal in a specific frequency band. An analog-to-digital converter converts the first converted signal into a digital signal. A digital down converter down converts the digital signal in response to a channel select signal to generate a second converted signal. The channel select signal controls the digital down converter to sweep a plurality of scan trains during a scan frame. Each of the scan trains includes a plurality of channels. The total channel number of the plurality of scan trains is N. A detector determines whether the RF signal includes an ID packet according to the second converted signal corresponding to the channels of the plurality of scan trains.
Abstract:
A wireless communication device is provided with a first radio module and a second radio module inside. The first radio module performs wireless transceiving according to a plurality of first traffic patterns which each indicates allocations of a plurality of first slots for a plurality of forthcoming transmitting or receiving operations, respectively. The second radio module determines an indicator indicating at least one of a plurality of second traffic patterns which each indicates allocations of a plurality of second slots for a plurality of forthcoming transmitting or receiving operations, respectively. Particularly, one or more allocations of the second slots are selectively determined according to the first traffic patterns. Also, the second radio module transmits the indicator to a peer communication device, so that the peer communication device performs transmitting or receiving operations according to the indicator.
Abstract:
A system for the coexistence between a plurality of wireless communication modules sharing a single antenna includes an antenna, first and second transceiving paths, and first and second wireless communications modules. The first wireless communications module is coupled to a first transceiving path and transmits or receives first wireless signals via the first transceiving path. The second wireless communications module is coupled to the second transceiving path and transmits and receives second wireless signals via the first and the second transceiving paths, wherein signal strengths of the second wireless signals passing through the second transceiving path are attenuated by a certain level, and the attenuated second wireless signals are added to the first wireless signals when passing through the first transceiving path, wherein one of the first and the second communications module is a LTE module and the other one is a WLAN module.
Abstract:
A communication apparatus is provided. The communication apparatus includes an RF module for receiving an RF signal, and a down converter, coupled to the RF module, for down converting the RF signal in response to a channel select signal to generate a converted signal. The channel select signal controls the down converter to sweep a plurality of scan trains during a scan frame, and each of the scan trains comprises a plurality of channels, wherein a total channel number of the plurality of scan trains is N, where 32≦N≦78. The communication apparatus also includes a detector, coupled to the down converter, for determining whether the RF signal comprises an ID packet according to the converted signal corresponding to the channels of the plurality of scan trains.
Abstract:
A wireless communications includes a first wireless communications and a second wireless communications. The first wireless communications module transmits or receives a first wireless signal in a first frequency band selected from a first frequency range. The second wireless communications module transmits or receives a second wireless signal in a second frequency band selected from a second frequency range, and adjusts a transmission power of the second wireless signal in response to that a frequency offset between the first frequency band and the second frequency band falls within a predetermined range. The first wireless communications module is further configured to determine an in-band range in the overlapping part of the first and second frequency ranges, and a transmission power of the second wireless signal is adjusted in response to a frequency offset between the first frequency band and the second frequency band.
Abstract:
The invention provides a mobile communication device having a first wireless communication module with a strong driving circuit, and a second wireless communication module with a weak driving circuit. The first wireless communication module is coupled to the second wireless communication module via only one wire. The first wireless communication module sends a first traffic pattern of a first wireless transceiving to the second wireless communication module via the wire, and receives a second traffic of a second wireless transceiving from the second wireless communication module via the wire. The second traffic pattern indicates whether the second wireless communication module decides to use a remaining period of time, in which the first wireless communication module is not required to perform wireless transceiving, for the second wireless transceiving.