Abstract:
A method and apparatus for three-dimensional and scalable video coding are disclosed. Embodiments according to the present invention determine a motion information set associated with the video data, wherein at least part of the motion information set is made available or unavailable conditionally depending on the video data type. The video data type may correspond to depth data, texture data, a view associated with the video data in three-dimensional video coding, or a layer associated with the video data in scalable video coding. The motion information set is then provided for coding or decoding of the video data, other video data, or both. At least a flag may be used to indicate whether part of the motion information set is available or unavailable. Alternatively, a coding profile for the video data may be used to determine whether the motion information is available or not based on the video data type.
Abstract:
A method for improved binarization and entropy coding process of syntax related to depth coding is disclosed. In one embodiment, a first value associated with the current depth block is bypass coded, where the first value corresponds to the residual magnitude of a block coded by an Intra or Inter SDC mode, the delta magnitude of a block coded by a DMM mode, or a residual sign of a block coded by the Inter SDC mode. In another embodiment, a first bin of a binary codeword is coded using arithmetic coding and the rest bins of the binary codeword are coded using bypass coding. The codeword corresponds to the residual magnitude of a block coded by the Intra or Inter SDC mode, or the delta DC magnitude of a block coded by the DMM mode.
Abstract:
A method and apparatus for deriving a motion vector predictor (MVP) are disclosed. The MVP is selected from spatial MVP and temporalone or more MVP candidates. The method determines a value of a flag in a video bitstream, where the flag is utilized for selectively disabling use of one or more temporal MVP candidates for motion vector prediction. The method selects, based on an index derived from the video bitstream, the MVP from one or more non-temporal MVP candidates responsive to the flag indicating that said one or more temporal MVP candidates are not to be utilized for motion vector prediction. Further, the method provides the MVP for the current block.
Abstract:
A method and apparatus for Simplified Depth Coding (SDC) with extended Intra prediction modes are disclosed. Embodiments of the present invention use an extended Intra prediction mode set including Horizontal mode and Vertical mode. When the Horizontal mode is selected, the prediction samples for the current depth block are derived based on a reconstructed neighboring depth column adjacent to a left block boundary of the current depth block by generating rows of the prediction samples from the reconstructed neighboring depth column. When the Vertical mode is selected, the prediction samples for the current depth block are derived based on a reconstructed neighboring depth row adjacent to a top block boundary of the current depth block by generating columns of the prediction samples from the reconstructed neighboring depth row.
Abstract:
A method and apparatus for three-dimensional video coding or multi-view video coding are disclosed. Embodiments according to the present invention derive a unified disparity vector from depth information for Inter mode and Skip/Direct mode. The unified disparity vector is derived from a subset of depth samples in an associated depth block corresponding to the current block using a unified derivation method. The unified derivation method is applied in Inter mode, Skip mode, or Direct mode when a disparity vector derived from depth data is required for encoding or decoding. The unified disparity vector can also be applied to derive a disparity vector for locating a corresponding block, and thus an inter-view motion vector candidate can be determined for Skip mode or Direct mode.
Abstract:
A method and apparatus for three-dimensional video encoding or decoding using the disparity vector derived from an associated depth block are disclosed. The method determines an associated depth block for a current texture block and derives a derived disparity vector based on a subset of depth samples of the associated depth block. The subset contains less depth samples than the associated depth block and the subset excludes a single-sample subset cprresponding to a center sample of the associated depth block. The derived disparity vector can be used as an inter-view motion (disparity) vector predictor in Inter mode, an inter-view (disparity) candidate in Merge mode or Skip mode. The derived disparity vector can also be used to locate a reference block for inter-view motion prediction in Inter mode, inter-view candidate in Merge or Skip mode, inter-view motion prediction, inter-view disparity prediction, or inter-view residual prediction.
Abstract:
A method and apparatus for coding a block of video data using index or pixel value prediction including a copy-by-pattern-search mode are disclosed. According to the present invention, a current search pattern is determined based on one or more previous coded pixels. One or more predictors are derived according to the current search pattern for a current index or pixel value of a current pixel in the current block. Encoding or decoding is then applied to one or more following indices or pixel values of one or more following pixels including the current pixel using the predictors. In a simplest case, the one or more previous coded pixels correspond to a single previous coded pixel at the left side of the current pixel and the one or more following pixels contain only the current pixel.
Abstract:
A method for three-dimensional video coding using aligned motion parameter derivation for motion information prediction and inheritance is disclosed. Embodiments according to the present invention utilize motion parameters associated with a corresponding block for motion information prediction or inheritance. The aligned motion parameters may be derived by searching each current reference picture list of the current block to find a matched reference picture having a same POC (Picture Order Count) or a same view index as that of the reference picture pointed by the MV of the corresponding block. The aligned motion parameters may also be derived by searching each current reference picture list to check whether the reference picture index of the reference picture in the reference view to be inherited exceeds a maximum reference picture index of each current reference picture list of the current block.
Abstract:
A method and apparatus to determine motion information for a current depth region depending on the motion information associated with a co-located texture region are provided for three-dimensional video. The motion information for the current depth region is set to pre-defined motion information or derived motion information if the co-located texture region of the texture picture or any texture sub-region in the co-located texture region is Intra-coded or has no valid motion information. The pre-defined motion information may correspond to motion vector (0,0), reference index 0, and a prediction type as indicated by a slice type. In one embodiment, the motion information for the current depth region is determined according to a subset of 8×8 texture sub-regions for a system with asymmetric resolution and the texture region corresponding to a macroblock.
Abstract:
A method and apparatus for spatial motion vector prediction (MVP) candidate derivation for Direct mode and Skip mode in three-dimensional video coding are disclosed. The motion vector of each neighboring block is associated with a corresponding reference picture index pointing to a corresponding reference picture. For both the Direct mode and the Skip mode, the motion vector of each neighboring block is selected as the spatial MVP candidate for each neighboring block only if the corresponding reference picture index is the same as a selected target reference picture index. In one embodiment, the target reference picture index is set to 0. In another embodiment, the target reference picture index corresponds to a majority of the corresponding reference picture indexes associated with the neighboring blocks in Direct mode or Skip mode.