Abstract:
A process and structure for a metal interconnect comprises providing a substrate with a first electric conductor, forming a first dielectric layer and a first patterned hard mask, using the first patterned hard mask to form a first opening and a second electric conductor, forming a second dielectric layer and a second patterned hard mask, using the second patterned hard mask as an etching mask and using a first patterned hard mask as an etch stop layer to form a second opening and a third electric conductor.
Abstract:
A dual damascene process is disclosed. A substrate having a base dielectric layer, a lower wiring layer inlaid in the base dielectric layer, and a cap layer capping the lower wiring layer is provided. A dielectric layer is deposited on the cap layer. A silicon oxide layer is deposited on the dielectric layer. A metal hard mask is formed on the silicon oxide layer. A trench opening is etched into the metal hard mask. A partial via feature is etched into the dielectric layer within the trench opening. The trench opening and the partial via feature are etch transferred into the dielectric layer, thereby forming a dual damascene opening, which exposes a portion of the cap layer. A liner removal step is performed to selectively remove the exposed cap layer from the dual damascene opening by employing CF4/NF3 plasma.
Abstract:
General speaking, a resistor of high resistivity has a negative-temperature-coefficient and a resistor of low resistivity has a positive-temperature-coefficient. Utilizing this characteristic, an appropriate proportion between the above resistors can be found to make a combined resistor with an approximate zero-temperature-coefficient. The combined resistor can be used to design a circuit for generating voltage and current with approximate zero-temperature-coefficients.
Abstract:
A dual damascene process is disclosed. A substrate having a base dielectric layer, a lower wiring layer inlaid in the base dielectric layer, and a cap layer capping the lower wiring layer is provided. A dielectric layer is deposited on the cap layer. A silicon oxide layer is deposited on the dielectric layer. A metal hard mask is formed on the silicon oxide layer. A trench opening is etched into the metal hard mask. A partial via feature is etched into the dielectric layer within the trench opening. The trench opening and the partial via feature are etch transferred into the dielectric layer, thereby forming a dual damascene opening, which exposes a portion of the cap layer. A liner removal step is performed to selectively remove the exposed cap layer from the dual damascene opening by employing CF4/NF3 plasma.
Abstract:
A non-volatile memory and an operating method thereof. The non-volatile memory includes a memory cell array, a first dummy cell array, an address decoding unit and a synchronous programming circuit. The memory cell array includes a first memory cell, and the first dummy cell array includes a first dummy cell. The first dummy cell is adjacent to a first side of a memory cell array and corresponds to the first memory cell. The address decoding unit receives an address signal for decoding. When the address signal is a relative address of the first dummy cell, the synchronous programming circuit controls the first dummy cell and the first memory cell to be synchronously programmed.
Abstract:
A non-volatile memory and an operating method thereof. The non-volatile memory includes a memory cell array, a first dummy cell array, an address decoding unit and a synchronous programming circuit. The memory cell array includes a first memory cell, and the first dummy cell array includes a first dummy cell. The first dummy cell is adjacent to a first side of a memory cell array and corresponds to the first memory cell. The address decoding unit receives an address signal for decoding. When the address signal is a relative address of the first dummy cell, the synchronous programming circuit controls the first dummy cell and the first memory cell to be synchronously programmed.
Abstract:
A process and structure for a metal interconnect comprises providing a substrate with a first electric conductor, forming a first dielectric layer and a first patterned hard mask, using the first patterned hard mask to form a first opening and a second electric conductor, forming a second dielectric layer and a second patterned hard mask, using the second patterned hard mask as an etching mask and using a first patterned hard mask as an etch stop layer to form a second opening and a third electric conductor.
Abstract:
General speaking, a resistor of high resistivity has a negative-temperature-coefficient and a resistor of low resistivity has a positive-temperature-coefficient. Utilizing this characteristic, an appropriate proportion between the above resistors can be found to make a combined resistor with an approximate zero-temperature-coefficient. The combined resistor can be used to design a circuit for generating voltage and current with approximate zero-temperature-coefficients.
Abstract:
A process and structure for a metal interconnect includes providing a substrate with a first electric conductor, forming a first dielectric layer and a first patterned hard mask, using the first patterned hard mask to form a first opening and a second electric conductor, forming a second dielectric layer and a second patterned hard mask, using the second patterned hard mask as an etching mask and using a first patterned hard mask as an etch stop layer to form a second opening and a third electric conductor.
Abstract:
Blanket implant diode which can be used for transient voltage suppression having a P+ substrate implanted with an N-type dopant blanket implant near a top surface of the substrate, creating a P− region. An oxide mask is layered adjacent to and above the P− region. The oxide mask is partially etched away from a portion of the P− region, creating an etched region. An N-type main function implant is implanted into the etched region, creating an N+ region above the P+ substrate and adjacent the P− region. And, a metal is layered above the oxide mask in the etched region to form an electrode. Terminations may be attached electrically to both sides of the P-N junction. Methods of making and using the present invention and methods for transient voltage suppression are also provided.