摘要:
A method is disclosed for the manufacture of colloidal rod particles as nanobarcodes. Template membranes for the deposition of materials are prepared using photolithographic techniques.
摘要:
Embodiments include a particle comprising a surface enhanced spectroscopy (SES)-active core and a SES-active reporter molecule associated with the SES-active core wherein said particle has a measurable SES spectrum when excited by incident light having a wavelength of at least 1400 nm. Alternative embodiments include methods of manufacturing said particle and methods of tagging a material with said particle. The particle may include an SES-active core which supports plasmon resonance at a wavelength of at least 1400 nm. The particle may comprise an anisotropic core. The particle may include an SES-active reporter molecule which is resonant at one or more wavelengths greater than or equal to 1400 nm.
摘要:
Submicron-sized particles or labels that can be covalently or non-covalently affixed to entities of interest for the purpose of quantification, location, identification, tracking, and diagnosis, are described.
摘要:
An assay and method of assay for optical detection of bioagents, a target nucleic acid or a target protein using a surface enhanced Raman scattering (SERS) active biomolecule molecular beacon. The present invention also provides the assay and method in a multiplexed format.
摘要:
Wavelength selective particles such as SERS nanotags modified for wavelength selectivity. As used herein, a wavelength selective particle is one which cannot be effectively excited or interrogated at one or more wavelengths where a reporter molecule associated with the particle would normally produce a spectrum. Also disclosed are methods of manufacturing wavelength selective particles and methods of tagging materials or objects with wavelength selective particles.
摘要:
Methods and compositions of matter are disclosed for creating tags such as SERS nanotags which are dispersible in an organic solvent. The tags are inherently hydrophilic and may be made dispersible in an organic solvent by associating the tag with an amphiphilic polymer. Alternatively, a tag may be associated with a surfactant. In another embodiment a tag having an encapsulant of a silicon containing material may be made dispersible in an organic solvent by modifying the encapsulant surface with a hydrophobic silane. In addition, a tag having an encapsulant of a silicon containing material may be modified by the esterification of the encapsulant with an alcohol.
摘要:
Embodiments include a particle comprising a surface enhanced spectroscopy (SES)-active core and a SES-active reporter molecule associated with the SES-active core wherein said particle has a measurable SES spectrum when excited by incident light having a wavelength of at least 1400 nm. Alternative embodiments include methods of manufacturing said particle and methods of tagging a material with said particle. The particle may include an SES-active core which supports plasmon resonance at a wavelength of at least 1400 nm. The particle may comprise an anisotropic core. The particle may include an SES-active reporter molecule which is resonant at one or more wavelengths greater than or equal to 1400 nm.
摘要:
Various methods of use for surface enhanced spectroscopy-active composite nanoparticles (SACN's) are provided. SACN's are submicron-sized particles or labels can be covalently or non-covalently affixed to entities of interest for the purpose of quantification, location, identification, tracking, and diagnosis. The various methods include administering a SACN nanoparticle imaging agent to a patient, scanning the patient using a system that can perform spectral imaging; and generating a spectrum or image of an internal region of the patient. A method, for diagnosing an abnormal pathology as well as a method for labeling an animal with a SACN are also provided.
摘要:
A method of detecting melamine which includes providing a quantity of SERS-active particles and mixing the SERS-active particles with a solution containing melamine. The method further includes detecting a surface enhanced Raman spectrum of the melamine. The foregoing method may optionally include aggregating the SERS-active particles. Aggregation may occur before or after the SERS-active particles are mixed with a solution containing melamine. The method of detecting melamine may optionally include concentration of the SERS-active particles. The method may further include mixing a chaotropic agent having a higher affinity for a selected binding site than melamine into the solution containing melamine. The method may further include mixing a quantity of a SERS-active standard having a known SERS spectrum with the solution containing melamine and SERS-active particles. Assay apparatus and systems are also disclosed.
摘要:
A method of detecting melamine which includes providing a quantity of SERS-active particles and mixing the SERS-active particles with a solution containing melamine. The method further includes detecting a surface enhanced Raman spectrum of the melamine. The foregoing method may optionally include aggregating the SERS-active particles. Aggregation may occur before or after the SERS-active particles are mixed with a solution containing melamine. The method of detecting melamine may optionally include concentration of the SERS-active particles. The method may further include mixing a chaotropic agent having a higher affinity for a selected binding site than melamine into the solution containing melamine. The method may further include mixing a quantity of a SERS-active standard having a known SERS spectrum with the solution containing melamine and SERS-active particles. Assay apparatus and systems are also disclosed.