Abstract:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.
Abstract:
The disclosure relates to an optical integrator configured to produce a plurality of secondary light sources in an illumination system of a microlithographic projection exposure apparatus. The disclosure also relates to a method of manufacturing an array of elongated microlenses for use in such an illumination system. Arrays of elongated microlenses are often contained in optical integrators or scattering plates of such illumination systems.
Abstract:
An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
Abstract:
A component for setting a scan-integrated illumination energy in an object plane of a microlithography projection exposure apparatus is disclosed. The component includes a plurality of diaphragms which are arranged alongside one another with respect to a direction perpendicular to the scan movement and which differ in their form and the position of which can be altered approximately in the scan direction so that a portion of the illumination energy can be vignetted by at least one diaphragm. The form of the individual diaphragm is specifically adapted to the form of the illumination in a diaphragm plane in which the component is arranged. This has the effect that at least parts of the delimiting edges of two diaphragms always differ in the case of an arbitrary displacement of the diaphragms.
Abstract:
The disclosure relates to an optical integrator configured to produce a plurality of secondary light sources in an illumination system of a microlithographic projection exposure apparatus. The disclosure also relates to a method of manufacturing an array of elongated microlenses for use in such an illumination system. Arrays of elongated microlenses are often contained in optical integrators or scattering plates of such illumination systems.
Abstract:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.
Abstract:
An illumination system for illuminating a mask in a scanning microlithographic projection exposure apparatus has an objective with an object plane, at least one pupil surface and an image plane in which a mask can be arranged. A beam deflection array of reflective or transparent beam deflection elements is provided, where each beam deflection element is adapted to deflect an impinging light ray by a deflection angle that is variable in response to a control signal. The beam deflection elements are arranged in or in close proximity to the object plane of the objective.
Abstract:
Illumination systems for microlithographic projection exposure apparatus, as well as related systems, components and methods are disclosed. In some embodiments, an illumination system includes one or more scattering structures and an optical integrator that produces a plurality of secondary light sources.
Abstract:
A microlithographic illumination system can include a light distribution device that can generate a two-dimensional intensity distribution in a first illumination plane. A first raster array of optical raster elements can generates a raster array of secondary light sources. A device with an additional optical effect can be disposed spatially adjacent to the two raster arrays. The device can be configured as an illumination angle variation device. The device can influence the intensity and/or the phase and/or the beam direction of the illumination light. The influence can be such that an intensity contribution of raster elements to the total illumination intensity can vary across the illumination field. This can enable the illumination intensity to be influenced across the illumination field in a defined manner with respect to the total illumination intensity and/or with respect to the intensity contributions from different directions of illumination.
Abstract:
A microlithographic illumination system can include a light distribution device that can generate a two-dimensional intensity distribution in a first illumination plane. A first raster array of optical raster elements can generates a raster array of secondary light sources. A device with an additional optical effect can be disposed spatially adjacent to the two raster arrays. The device can be configured as an illumination angle variation device. The device can influence the intensity and/or the phase and/or the beam direction of the illumination light. The influence can be such that an intensity contribution of raster elements to the total illumination intensity can vary across the illumination field. This can enable the illumination intensity to be influenced across the illumination field in a defined manner with respect to the total illumination intensity and/or with respect to the intensity contributions from different directions of illumination.