摘要:
An illumination system of a microlithographic projection exposure apparatus includes a light source to produce projection light beam, and a first and a second diffractive optical element between the light source and a pupil plane of the illumination system. The diffractive effect produced by each diffractive optical element depends on the position of a light field that is irradiated by the projection light on the diffractive optical elements. A displacement mechanism changes the mutual spatial arrangement of the diffractive optical elements. In at least one of the mutual spatial arrangements, which can be obtained with the help of the displacement mechanism, the light field extends both over the first and the second diffractive optical element. This makes it possible to produce in a simple manner continuously variable illumination settings.
摘要:
Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
摘要:
A microlithographic projection exposure apparatus includes an optical surface, which may be formed by a plurality of micro-mirrors, and a measurement device which is configured to measure a parameter related to the optical surface at a plurality of locations. The measurement device includes an illumination unit with a plurality of illumination members, each having a light exit facet. An optical imaging system establishes an imaging relationship between an object plane in which at least two light exit facets are arranged, and an image plane which at least substantially coincides with the optical surface. A detector unit measures the property of measuring light after it has interacted with the optical surface, and an evaluation unit determines the surface related parameter for each of the locations on the basis of the properties determined by the detector unit.
摘要:
An illumination system of a microlithographic projection exposure apparatus has a pupil surface and an essentially flat arrangement of desirably individually drivable beam deviating elements for variable illumination of the pupil surface. Each beam deviating element allows deviation of a projection light beam incident on it to be achieved as a function of a control signal applied to the beam deviating element. A measurement illumination instrument directs a measurement light beam, independent of the projection light beams, onto a beam deviating element. A detector instrument records the measurement light beam after deviation by the beam deviating element. An evaluation unit determines the deviation of the projection light beam from measurement signals provided by the detector instrument.
摘要:
A microlithographic projection exposure apparatus (1) comprises an illumination system (4) with an illumination optics (5) for illuminating an illumination field in a reticle plane (6). The illumination optics (5) further includes a light distribution device (12a) which comprises a light deflection array (12) of separate elements and an optical assembly (21, 23 to 26) which converts the light intensity distribution defined by the light distribution device (12a) in a first plane (19) of the illumination optics (5) into an illumination angle distribution in the reticle plane (6). Downstream of an output coupling device (17), which is arranged in the light path between the light deflection array (12) and the reticle plane (6), a space and time resolving detection device (30) is exposed to outcoupled illumination light (31) in such a way that the detection device (30) detects a light intensity distribution corresponding to the light intensity distribution in the first plane (19). The detection device (30) allows the influence of separate elements or groups of separate elements on the light intensity distribution in the first plane (19) to be determined, particularly by varying said separate elements or groups of separate elements over time. The result is an illumination optics in which the function of the light deflection array is performed during normal operation.
摘要:
Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
摘要:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a second adjusted intensity distribution in the associated exit pupil by less than 0.1 in at least one of an inner σ or an outer σ.
摘要:
Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
摘要:
In a projection exposure method for the exposure of a radiation-sensitive substrate arranged in the region of an image surface of a projection objective with at least one image of a pattern of a mask arranged in the region of an object surface of the projection objective, laser radiation having a spectral intensity distribution I(ω) dependent on the angular frequency ω is used. The laser radiation is characterized by an aberration parameter α in accordance with: α := ∫ I ( ω ) ω 2 ω ∫ I ( ω ) ω and a coherence time τ in accordance with: τ = ∫ I ( ω ) 2 ω [ ∫ I ( ω ) ω ] 2 The laser radiation is introduced into an illumination system for generating an illumination radiation directed onto the mask, and the pattern is imaged onto the substrate with the aid of a projection objective. The spectral intensity distribution is set so that ατ2≦0.3. The influence of temporally varying speckles on image generation can be reduced by comparison with conventional methods, without simultaneously increasing the influence of chromatic aberrations on image generation.
摘要翻译:在投影曝光方法中,通过布置在投影物镜的物体表面的区域中的掩模图案的至少一个图像来布置在投影物镜的图像表面区域中的放射线敏感基板的曝光, 使用具有取决于角频率ω的光谱强度分布I(ω)的激光辐射。 激光辐射的特征在于根据以下的像差参数α:α= =∫I(())ωω∫∫∫∫ I(?)2∫ω∫∫I(ω)ωωωωωthe the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the 协助投影目标。 光谱强度分布被设置为使得ατ2≦̸ 0.3。 与常规方法相比,可以减少时间上变化的斑点对图像产生的影响,而不会同时增加色差对图像生成的影响。
摘要:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.