摘要:
In a conventional manufacturing process where the number of manufacturing processes is reduced to form a semiconductor layer of a channel etch-type insulating gate-type transistor and source-drain wires in one photographic etching processing using half-tone exposure technology, the manufacturing margin is narrow, lowering the yield if the distance between the source and the drain wire shortens. A 4-mask process proposal needless of half-tone exposure technology is constructed by streamlining the formation of scan lines and pseudo-pixel electrodes at the same time, both comprising a laminate of a transparent conductive layer and a metal layer, and the formation of the transparent conductive pixel electrodes through removing the metal layers on the pseudo-pixel electrodes at the time of the formation of the opening in the passivation insulating layer, as well as by reducing the formation process of the opening through removing a gate insulating layer also at the formation of semiconductor layers for channel-etch type insulating gate transistors.
摘要:
A display panel capable of supplying necessary signals and power source at low resistance to a semiconductor integrated circuit chip mounted on a display panel is disclosed. Herein, electric signals are supplied to terminal electrodes of the scanning lines and signal lines by mounting a driving integrated circuit chip directly on the terminal electrode disposed on the active substrate. Further, electric connection to the driving integrated circuit chip is achieved by mounting a printed circuit board having a larger opening than the outside shape of the driving integrated circuit chip and forming wiring lines at the mounting position of the driving integrated circuit chip mounted on the active substrate and its vicinity, on outside of the image display region of the active substrate.
摘要:
A liquid crystal image display device comprising an insulating substrate having plural scanning lines and signal lines and a switching device and a pixel electrode provided for each of pixels, a light-transmissive insulating substrate having a transparent conductive counter electrode and liquid crystal filled between both substrates, wherein said signal lines or scanning lines for supplying electric signals to said switching devices and conductive paths for connecting said switching devices with the pixel electrodes are coated with an thick organic film so as to be electrically isolated from said liquid crystal.
摘要:
In a conventional manufacturing process where the number of manufacturing processes is reduced to form a semiconductor layer of a channel etch-type insulating gate-type transistor and source-drain wires in one photographic etching processing using half-tone exposure technology, the manufacturing margin is narrow, lowering the yield if the distance between the source and the drain wire shortens. A 4-mask process proposal needless of half-tone exposure technology is constructed by streamlining the formation of scan lines and pseudo-pixel electrodes at the same time, both comprising a laminate of a transparent conductive layer and a metal layer, and the formation of the transparent conductive pixel electrodes through removing the metal layers on the pseudo-pixel electrodes at the time of the formation of the opening in the passivation insulating layer, as well as by reducing the formation process of the opening through removing a gate insulating layer also at the formation of semiconductor layers for channel-etch type insulating gate transistors.
摘要:
Development of 3-mask process to reduce the manufacturing cost of LCD-display device successively following 4-mask process. Opening formation process and pixel electrode formation process which is sequentially done following the opening formation process are treated with one photo-mask without using halftone exposure technology by forming source-drain wires comprising a low-resistance metal layer and a heat-resistant metal layer, the latter is capable of being removed with etching gas for etching gate insulating layer (and passivation insulating layer), giving protection means at least for the channel and the data line of the insulating gate transistor, forming openings in the insulating layers including the gate insulating layer with photosensitive resins having counter-taper cross sections, removing the exposed low-resistance metal in the openings, forming pixel electrode with the photosensitive resins as a lift-off material to lift off the conductive thin film for pixel electrode.
摘要:
A four-mask process and a three-mask process proposal are constructed for a TN-type liquid crystal display device and an IPS-type liquid crystal device in which the formation of a passivation insulating layer is not required by streamlining the formation of a scan line and a pseudo-pixel element, both comprising a laminate made of a transparent conductive layer and a metal layer, at the same time and the formation of the transparent conductive pixel electrode by removing the metal layer on the pseudo-pixel electrode at the time of the formation of the opening in the gate insulating layer, by streamlining the treatment of the formation process of the contact and the formation process of the protective insulating layer using one photomask due to the introduction of half-tone exposure technology, and the formation of source-drain wires for etch-stop type insulating gate-type transistor using a photosensitive organic insulating layer and leaving the photosensitive organic insulating layer unchanged on source-drain wires or on the source wire (signal line), or by forming an anodized layer, which is an insulating layer, on source-drain wires.
摘要:
Four-mask and three-mask process for TN-type liquid crystal display made with combination of the formation process of the signal line and the formation process of the pixel electrode by forming a signal line of a laminate of a transparent conductive layer and a low-resistance metal layer and a pseudo-pixel electrode, removing a low resistance metal layer on the pseudo-pixel electrode during formation of an opening in a passivation insulating layer to obtain a pixel electrode having a transparent conductive layer. Contact formation process by removing the gate insulating layer during formation of the semiconductor layer, and the formation process of the contact and the formation process of the semiconductor layer, or the formation process of the scan line and the formation process of the contact or the formation process of the scan line and the formation process of the semiconductor layer by introducing half-tone exposure technology.
摘要:
In the 5-mask and 4-mask processes, during the formation of contacts, breakings in the pixel electrodes and unstable contacts that follow tend to occur. Using source-drain wires consisting of a lamination layer of a heat resistant metal layer and an aluminum layer, the undercuts of the passivation insulating layer formed by removing an aluminum layer in the openings on drain electrodes is resolved by adding manufacturing processes to enlarge the said openings.
摘要:
According to the insulated gate transistor, a gate electrode (11A) is provided on a main surface of a glass substrate (2); a first part of an insulating layer (gate insulating layer (30) and transparent inorganic insulating layer (60)) is thicker than a second part of the insulating layer (gate insulating layer (30)), the first part being between (i) the gate electrode (11A) and (ii) a source electrode (12) and a drain electrode (21) of the insulated gate transistor, and the second part being between (i) the gate electrode (11A) and (ii) a channel section (31A) of the insulated gate transistor. This makes it possible to reduce parasitic capacitor without deteriorating characteristics of the transistor.
摘要:
A four-mask process and a three-mask process proposal are constructed for a TN-type liquid crystal display device and an IPS-type liquid crystal device in which the formation of a passivation insulating layer is not required by streamlining the formation of a scan line and a pseudo-pixel element, both comprising a laminate made of a transparent conductive layer and a metal layer, at the same time and the formation of the transparent conductive pixel electrode by removing the metal layer on the pseudo-pixel electrode at the time of the formation of the opening in the gate insulating layer, by streamlining the treatment of the formation process of the contact and the formation process of the protective insulating layer using one photomask due to the introduction of half-tone exposure technology, and the formation of source-drain wires for etch-stop type insulating gate-type transistor using a photosensitive organic insulating layer and leaving the photosensitive organic insulating layer unchanged on source-drain wires or on the source wire (signal line), or by forming an anodized layer, which is an insulating layer, on source-drain wires.