Abstract:
Various molded chip combinations and methods of manufacturing the same are disclosed. In one aspect, a molded chip combination is provided that includes a first semiconductor chip that has a first PHY region, a second semiconductor chip that has a second PHY region, an interconnect chip interconnecting the first PHY region to the second PHY region, and a molding joining together the first semiconductor chip, the second semiconductor chip and the interconnect chip.
Abstract:
Various semiconductor chip devices and methods of making the same are disclosed. In one aspect, an apparatus is provided that includes a first redistribution layer (RDL) structure having a first plurality of conductor traces, a first molding layer on the first RDL structure, plural conductive pillars in the first molding layer, each of the conductive pillars including a first end and a second end, a second RDL structure on the first molding layer, the second RDL structure having a second plurality of conductor traces, and wherein some of the conductive pillars are electrically connected between some of the first plurality of conductor traces and some of the second plurality of conductor traces to provide a first inductor coil.
Abstract:
Various molded fan-out semiconductor chip devices are disclosed. In one aspect, a semiconductor chip device is provided that includes a first molding layer that has internal conductor structures, a redistribution layer (RDL) structure positioned on the first molding layer and electrically connected to the internal conductor structures, a semiconductor chip positioned on and electrically connected to the RDL structure, and a second molding layer positioned on the RDL structure and at least partially encapsulating the semiconductor chip.
Abstract:
Various fan-out devices are disclosed. In one aspect, a semiconductor chip device is provided that includes a redistribution layer (RDL) structure. The RDL structure includes plural metallization layers and plural polymer layers. One of the polymer layers is positioned over one of the metallization layers. The one of the metallization layers has conductor traces. The one of the polymer layers has an upper surface that is substantially planar at least where the conductor traces are positioned. A semiconductor chip is positioned on and electrically connected to the RDL structure. A molding layer is positioned on the RDL structure and at least partially encases the semiconductor chip.
Abstract:
Various multi-die arrangements and methods of manufacturing the same are disclosed. In one aspect, a method of manufacturing a semiconductor chip device is provided. A redistribution layer (RDL) structure is fabricated with a first side and second side opposite to the first side. An interconnect chip is mounted on the first side of the RDL structure. A first semiconductor chip and a second semiconductor chip are mounted on the second side of the RDL structure after mounting the interconnect chip. The RDL structure and the interconnect chip electrically connect the first semiconductor chip to the second semiconductor chip.
Abstract:
Various semiconductor chip devices with stacked chips are disclosed. In one aspect, a semiconductor chip device includes a stack of plural semiconductor chips. Each two adjacent semiconductor chips of the plural semiconductor chips is electrically connected by plural interconnects and physically connected by a first insulating bonding layer. A first stack of dummy chips is positioned opposite a first side of the stack of semiconductor chips and separated from the plural semiconductor chips by a first gap. Each two adjacent of the first dummy chips are physically connected by a second insulating bonding layer. A second stack of dummy chips is positioned opposite a second side of the stack of semiconductor chips and separated from the plural semiconductor chips by a second gap. Each two adjacent of the second dummy chips are physically connected by a third insulating bonding layer. The first, second and third insulating bonding layers include a first insulating layer and a second insulating layer bonded to the first insulating layer. An insulating layer is in the first gap and another insulating layer is in the second gap.
Abstract:
Various semiconductor chip devices with stacked chips are disclosed. In one aspect, a semiconductor chip device is provided. The semiconductor chip device includes a first semiconductor chip that has a front side and a back side and plural through chip vias. The through chip vias have a first footprint. The back side is configured to have a second semiconductor chip stacked thereon. The second semiconductor chip includes plural interconnects that have a second footprint larger than the first footprint. The back side includes a backside interconnect structure configured to connect to the interconnects and provide fanned-in pathways to the through chip vias.
Abstract:
Various arrangements of multi-RDL structure devices are disclosed. In one aspect, an apparatus is provided that includes a first redistribution layer structure and a second redistribution layer structure mounted on the first redistribution layer structure. A first semiconductor chip is mounted on the second redistribution layer structure and electrically connected to both the second redistribution layer structure and the first redistribution layer structure.
Abstract:
Various semiconductor chip devices with stacked chips are disclosed. In one aspect, a semiconductor chip device is provided. The semiconductor chip device includes a first semiconductor chip that has a floor plan with a high heat producing area and a low heat producing area. At least one second semiconductor chip is stacked on the low heat producing area. The semiconductor chip device also includes means for transferring heat from the high heat producing area.
Abstract:
A double side grinder comprises a pair of grinding wheels and a pair of hydrostatic pads operable to hold a flat workpiece (e.g., semiconductor wafer) so that part of the workpiece is positioned between the grinding wheels and part of the workpiece is positioned between the hydrostatic pads. At least one sensor measures a distance between the workpiece and the respective sensor for assessing nanotopology of the workpiece. In a method of the invention, a distance to the workpiece is measured during grinding and used to assess nanotopology of the workpiece. For instance, a finite element structural analysis of the workpiece can be performed using sensor data to derive at least one boundary condition. The nanotopology assessment can begin before the workpiece is removed from the grinder, providing rapid nanotopology feedback. A spatial filter can be used to predict the likely nanotopology of the workpiece after further processing.