Abstract:
A coil component that includes a coil having a thick coil core and good inductance characteristics and is able to narrow the pitch of a coil electrode is provided. The wiring of a coil electrode in a direction across the direction of a winding axis of the coil electrode includes a plurality of first metal pins and a plurality of second metal pins. By elongating each metal pin, the wiring of the coil electrode is easily elongated in a metal pin direction. Thus, a coil core is easily thickened in the metal pin direction. The wiring of the coil electrode can be formed in the metal pin direction only by arranging the metal pins. Thus, it is possible to provide a coil component that includes a coil having the thick coil core and good inductance characteristics and is able to narrow the pitch of the coil electrode.
Abstract:
An inductor module includes a laminate where multiple insulator layers are laminated, a main line conductor in the shape of a straight line formed on the laminate, a current detection conductor that is formed on the laminate and magnetically coupled with the main line conductor, and coil conductors that are formed on the laminate and constitute an inductor element. An absolute value of a coupling coefficient between the main line conductor and inductor element, and an absolute value of a coupling coefficient between the current detection conductor and the inductor element, are each smaller than an absolute value of a coupling coefficient between the main line conductor and the current detection conductor. Thus, an inductor module that detects current and is used as an inductor element, and an electric power transmission system including the inductor module, are provided.
Abstract:
In a power transmitting device (101) and a power receiving device (201), active electrodes (13, 23), passive electrodes (14, 24), and reference potential electrodes (15, 25) oppose each other so as to make capacitance coupling, so that capacitances Caa, Cpp, and Cgg are generated. Capacitors having capacitances C1a, C1p, C2a, and C2p are connected to between the reference potential electrode (15) and the active electrode (13), between the reference potential electrode (15) and the passive electrode (14), between the reference potential electrode (25) and the active electrode (23), and between the reference potential electrode (25) and the passive electrode (24), respectively. The power transmission system (1) satisfies any one or more of the conditions of Caa+Cpp
Abstract:
A wireless power transmission system includes a power transmission device, which applies an alternating-current voltage to active and passive electrodes, and a power reception device, which supplies to a load a voltage induced in active and passive electrodes facing the active and passive electrodes of the power transmission device. The power transmission device includes a planar coil connected to the active and passive electrodes and the power reception device includes a planar coil connected to the active and passive electrodes. Magnetic flux generated by the planar coils link with each other causing the planar coils to be magnetic-field coupled with each other. Thus, a wireless power transmission system capable of efficiently transmitting power is provided.
Abstract:
An electric power receiving apparatus of an electric power transmitting system includes an overvoltage suppressing unit connected in parallel to a resonant circuit. The overvoltage suppressing unit is formed by an impedance element. Impedance of the impedance element is set to such a value that a rise in a voltage across at least one pair of electric power receiving electrodes is suppressed as compared to a case in which the impedance element is not connected, in the process in which coupling capacitance Cm between electric power transmitting electrodes and the electric power receiving electrodes changes from a value held while the electric power transmitting electrodes and the electric power receiving electrodes are in a predetermined positional relationship during normal electric power transmission to substantially zero.
Abstract:
When power transmitting electrodes of a power transmitting apparatus are respectively facing power receiving electrodes of a power receiving apparatus, a composite resonant circuit including a series resonant circuit and a parallel resonant circuit is formed through a compound capacitance formed between the power transmitting electrodes and the power receiving electrodes. In a predetermined mutually facing state in which the compound capacitance becomes maximum, the impedances of the configuration components of the composite resonant circuit are set such that a resonant frequency at which the impedance of the composite resonant circuit from a signal generator side when inputs of a load circuit is short-circuited becomes locally minimum, becomes higher than a resonant frequency at which the impedance of the composite resonant circuit as seen from the signal generator side when the inputs of the load circuit are open becomes locally maximum.
Abstract:
A power transmitting apparatus includes an active electrode, a passive electrode, a voltage generating circuit that applies a voltage between the active electrode and the passive electrode, and a reference potential electrode connected to a reference potential. A power receiving apparatus includes an active electrode, a passive electrode, a secondary battery connected between the active electrode and the passive electrode, and a reference potential electrode connected to a reference potential. Power is transmitted from the power transmitting apparatus to the power receiving apparatus as a result of the respective electrodes facing each other and being capacitively coupled to each other when the power receiving apparatus is mounted to the power transmitting apparatus.
Abstract:
An electric power transmission system that includes a power receiving device having a first coupling electrode and a power transmission device having a second coupling electrode, both the devices being coupled via an electrostatic field, and the power transmission device configured to transmit electric power to the power receiving device in a noncontact state. The power transmission device includes a third coupling electrode that is disposed at a distance from the second coupling electrode. The third coupling electrode has a potential higher than that of the second passive electrode and lower than that of the second active electrode.
Abstract:
A power supply module includes a substrate, a switching control IC and a coil. The coil includes a plurality of metal posts, first ends of which are mounted on a first surface of the substrate, wiring conductors that are in conductive contact with the first ends of the metal posts, and post connection conductors that are in conductive contact with second ends of the metal posts. The power supply module further includes a magnetic core that strengthens magnetic flux generated by the coil, and a sealing resin that seals the metal posts and the magnetic core.
Abstract:
A power transfer system that transfers electric power from a power transmission device to a power reception device through electrical coupling. The power transmission device and the power reception device structurally designed such that the power transfer system is able to stabilize reference potentials of the power transmission device and the power reception device when the power reception device is placed on the power transmission device.