Abstract:
A vector generation unit selects, for each of three or more reference points set at locations spaced apart from each other on a sphere, a line segment to be drawn from each of the three or more reference points without intersecting another line segment, from among one or more line segments forming an airspace defined by a closed curve on the sphere, and generates, for each of the three or more reference points, a vector from the selected line segment to each of the reference points. An airspace recognition unit recognizes one of two regions on a true sphere as an outside of the airspace and recognizes the other region as the airspace, the two regions being separated by the closed curve, the one of the two regions including the vectors of more than half of the three or more reference points.
Abstract:
Concerning a thermoelectric conversion element, it is desired to provide a new spin current to charge current conversion material. A thermoelectric conversion element includes a magnetic layer possessing in-plane magnetization, and an electromotive layer magnetically coupled to the magnetic layer. The electromotive layer is formed of a carbon material, possesses anisotropy of electric conductivity, and further includes an additive.
Abstract:
An object of the present invention is to provide a thermoelectric conversion element that can demonstrate satisfactory thermoelectric conversion performance, and also has flexibility or can be mounted on a surface having irregularities or a curved surface, a method of manufacturing such a thermoelectric conversion element, and a method of using such a thermoelectric conversion element. A thermoelectric conversion element according to the present invention includes a columnar crystal ferrite layer and an electromotive film formed on the columnar crystal ferrite layer. The electromotive film is configured to generate an electromotive force in an in-plane direction by an inverse spin Hall effect. Columnar crystal grains of the columnar crystal ferrite layer include a major axis a of not less than 200 nm and a minor axis b of not more than 500 nm where a>b.
Abstract:
Provided is a thermoelectric conversion element having a high Anomalous Nernst Effect at a lower cost. A thermoelectric conversion element (1) includes a magnetic alloy material containing aluminum, cobalt, and samarium, and a power generation layer (10), in which in the power generation layer (10), a content of aluminum in the magnetic alloy material is in a range of 1 atomic percent to 40 atomic percent, a content of samarium in the magnetic alloy material is in a range of 12 atomic percent to 40 atomic percent, and a content of cobalt in the magnetic alloy material is in a range of 57 atomic percent to 82 atomic percent.
Abstract:
This invention prevents measurement error from becoming large in thermoelectric conversion coefficient evaluation and enhances evaluation efficiency. This invention is a physical property evaluation device for evaluating the physical properties of a plurality of solid materials formed on a substrate. The physical property evaluation device comprises an electromotive force measurement means that forms closed circuits including the individual solid materials and measures the electromotive forces occurring at the two ends of each of the solid materials, a means for producing heat flow within the individual solid materials, an external magnetic field generation means for generating a uniform magnetic field having a given intensity and direction in the vicinity of the individual solid materials, and an automation means for evaluating the physical properties of the individual solid materials using the electromotive force measurement means, heat flow production means, and external magnetic field generation means.
Abstract:
The purpose of the present invention is to make it possible to ensure a strength that allows thermoelectric evaluation to be performed even when sintering is carried out at a temperature lower than the minimum sintering temperature of a power generation layer, in a thermoelectric conversion element. For this purpose, this thermoelectric conversion element is characterized by being provided with a power generation layer and support layers including a sintered body, wherein the power generation layer is provided with a metal-magnetic insulator composite structure in which metal is formed in a net shape around a granulated magnetic body, the support layers are formed so as to be in contact with the top and bottom or the right and left of the power generation layer, and the minimum sintering temperature of the support layers is lower than the minimum sintering temperature of the power generation layer.
Abstract:
A thermoelectric conversion element includes: a magnetic body having a magnetization; and an electromotive body formed of material exhibiting a spin orbit coupling and jointed to the magnetic body. The magnetic body has an upper joint surface jointed to the electromotive body. The upper joint surface has concavities and convexities.
Abstract:
A magnetic element according to the present invention is formed of a layered product having a magnetic insulator film formed on a substrate including a material having no crystal structure. The magnetic insulator film has a columnar crystal structure.
Abstract:
A heat-flow sensor that includes an insulating layer, a magnetic field application layer arranged on a first surface of the insulating layer and composed of a conductor, and a heat-flow detection layer arranged on a second surface of the insulating layer, the second surface facing the first surface, and the heat-flow detection layer composed of a conductive magnetic body. The heat-flow detection layer faces the magnetic field application layer via the insulating layer.
Abstract:
A magnetic alloy material that includes iron and cobalt as main components and at least one element selected from the group containing of platinum, gold, and iridium.