Abstract:
An active matrix liquid crystal display panel by which a good display characteristic can be obtained without suffering from gradation reversal over a wide visibility angle range. A liquid crystal layer 4 is formed such that the thickness thereof varies in accordance with transmission wavelengths of color layers 6, 7 and 8 so that a very good display which does not exhibit any coloring in whichever direction it is viewed may be obtained. An active matrix substrate A includes a plurality of opposing electrodes 2, a plurality of pixel electrodes 3 parallel to the opposing electrodes 2, a thin film transistor, and an orientation film 23 all formed on a glass substrate 10. A color filter substrate C includes an orientation film 56 provided on one surface of another glass substrate 10 and an optical compensation layer 35 provided on the other surface of the glass substrate 10 and formed from a plastic film. The two substrates are disposed such that the orientation films thereof oppose each other, and polarization plates 34 and 5 are disposed on the outer sides of the two substrates, and a liquid crystal layer 4 having a positive refractive index anisotropy is provided between the orientation films 23. The optical compensation layer 35 has a negative one axial refractive index anisotropy and can cancel a retardation produced in the liquid crystal layer 4 thereby to suppress white floating of a black display portion.
Abstract:
In a liquid crystal display, a liquid crystal layer is sandwiched between a lower substrate on which interconnections and thin film transistors are formed and an opposite substrate so arranged as to face the lower substrate. A reflection area in which a reflection electrode is formed and a transparent area in which a transparent electrode is formed are provided, and a common electrode is formed on the opposite substrate. As a voltage is applied between the reflection electrode and the transparent electrode and common electrode, the liquid crystal layer is driven. A potential difference between the drive voltage applied to that surface of the lower substrate which contacts the liquid crystal layer and the drive voltage applied to that surface of the opposite substrate which contacts the liquid crystal layer is made lower in the transparent area than in the reflection area by capacitive division of electrostatic capacities of the transparent area and the reflection area. This maximizes the luminance in reflection mode as well as transmission mode, so that the alignment of liquid crystal molecules is not disturbed even around the boundary between the reflection area and the transparent area.
Abstract:
A reflection electrode has an undulated shape and whose normal direction is distributed unevenly to a specific azimuth angle and whose reflection light intensity depends on said azimuth angle. Openings are formed in that area of the reflection electrode which has a tilt angle of 0 degree to 2 degrees and/or a tilt angle of 10 degrees or higher. The retardation of a liquid crystal layer is changed by making the liquid crystal molecular alignment mode different between the openings and the reflection electrode, so that the intensity of output light is increased in reflection mode as well as in transmission mode. The balance of colors displayed in transmission mode is determined by determining the area of the openings in pixels of each color, and the color temperature is set higher in transmission mode than in reflection mode. This provides a semi-transmission type liquid crystal display which has an excellent visibility in reflection mode as well as in transmission mode.
Abstract:
There is provided a liquid crystal display including (a) a backlight source having a dominant emission peak at 380-420 nm, (b) a first polarization layer for selecting a light directed in a predetermined direction among lights emitted from the backlight source, (c) a second polarization layer for receiving a light selected by the first polarization layer, (d) first and second transparent substrates, (e) first and second transparent electrodes, (f) a liquid crystal layer, and (g) a fluorescent material layer receiving lights from the backlight source and emitting a light therefrom. The second polarization layer is located intermediate between the first and second transparent substrates. The backlight source, the first polarization layer, the first transparent substrate, the first transparent electrode, the liquid crystal layer, the second transparent electrode, the second polarization layer, the fluorescent material layer, and the second transparent substrate are preferably deposited from bottom to top in this order. The above-mentioned liquid crystal display makes it possible to reduce the number of transparent substrates by one relative to a conventional liquid crystal display, which ensures higher brightness and no parallax.
Abstract:
A dedicated control signal electrode is provided between pixel electrodes, and a strong electric field is generated between the control signal electrode and the common electrode to quickly and securely make an initial transition from liquid crystal molecules in a splay alignment state to the same in a bend alignment state. In addition, generating a strong electric field between the control signal electrode and the common electrode even during operation for displaying an image makes liquid crystal molecules stably stay in a bend alignment state. In this case the scan signal electrode, the video signal electrode and the common electrode, which are required for displaying an image, are not used to make a transition from liquid crystal molecules in a splay alignment state to the same in a bend alignment state and make the same stay in a bend alignment state.
Abstract:
A polarizer and a null wavelength plate are bonded to each of first and second substrates of a liquid crystal panel that includes a liquid crystal layer having a bend alignment such that an angle between an optical axis of the null wavelength plate and a transmission axis of the polarizer is made 45null relative to each other to make circularly polarized lights outputted respectively from the null wavelength plate and the polarizer each have a polarity opposite each other. In this case, since a light inputted to a liquid crystal display device is converted into a circularly polarized light before entering a liquid crystal layer, the maximum value of an intensity of the light exited from the device becomes constant regardless of the orientation of the optical axis of the liquid crystal layer 101. As described above, the optical axis of the liquid crystal layer is desirably made parallel to a horizontal direction to improve stability of the liquid crystal layer having a bend alignment, and further, the transmission axes of the first and second polarizers are freely made only just maintaining forcible positional relationship therebetween which makes the transmission axes of the first and second polarizers orthogonal to each other, thereby allowing a viewing angle along horizontal and vertical directions to increase.
Abstract:
Light emitting means has a configuration such that an optically active medium having a spiral structure, a quarter-wave plate, and a linear polarization plate are provided over light emitting elements formed by stacking a mirror-reflecting electrode, an organic EL layer, and a transparent electrode.
Abstract:
There is provided a liquid crystal display including (a) a backlight source having a dominant emission peak at 380-420 nm, (b) a first polarization layer for selecting a light directed in a predetermined direction among lights emitted from the backlight source, (c) a second polarization layer for receiving a light selected by the first polarization layer, (d) first and second transparent substrates, (e) first and second transparent electrodes, (f) a liquid crystal layer, and (g) a fluorescent material layer receiving lights from the backlight source and emitting a light therefrom. The second polarization layer is located intermediate between the first and second transparent substrates. The backlight source, the first polarization layer, the first transparent substrate, the first transparent electrode, the liquid crystal layer, the second transparent electrode, the second polarization layer, the fluorescent material layer, and the second transparent substrate are preferably deposited from bottom to top in this order. The above-mentioned liquid crystal display makes it possible to reduce the number of transparent substrates by one relative to a conventional liquid crystal display, which ensures higher brightness and no parallax.
Abstract:
The wafer inspection device carries out inspection of a plurality of integrated circuits provided with a plurality of electrode pads, respectively, in a condition where the integrated circuits are formed on a wafer. The wafer inspection device is provided with a test head for outputting a test pattern from a plurality of tester pogo pins, a test board to which the tester pogo pins are connected, and a substrate. A plurality of contact pins that correspond to the tester pogo pins, respectively, and are arranged in a matrix form are provided on the test board. A plurality of first terminals, which are connected, respectively, to the plurality of electrode pads, are provided on a first main surface of the substrate. A plurality of second terminals, which comprise terminal groups for each integrated circuit, are provided on a second main surface of the substrate. The terminal groups are arranged in a matrix form, and the second terminals are connected to the contact pins for each terminal group. Furthermore, inner wiring that connects the first and second terminals is provided in the substrate.
Abstract:
A liquid crystal display panel comprises a TFT substrate unit having a thin film transistor (TFT), a control electrode connected to the TFT, a flattening film covers the control electrode, and a pixel electrode having a cross slit and formed on the flattening film and insulated from the control electrode. An opposite substrate unit has an opposite electrode facing the pixel electrode at predetermined space. A liquid crystal layer disposed between the TFT substrate unit and the opposite substrate and includes liquid crystal molecules having negative dielectric aeolotropy. When voltage is supplied between the control electrode and the opposite electrode, an electric field is generated between them. The electric field divides the liquid crystal layer into four domains in each pixel according to the cross slit formed in the pixel electrode.