Abstract:
An optical phase scrambler is coupled to a laser source to randomly modulate the optical phase. Since the optical phase is continuously changing in a random fashion, at the output of an etalon interferometer formed in the optical path, the two or more components in the interference always have certain time delay between each other, resulting in a random phase different between each other. Therefore, after interference, the fringe amplitude varies randomly as well. Then at the receiver side, the fringe noise is greatly reduced after averaging over time.
Abstract:
A long haul transmission system uses a digital signal processor DSP instead of an additional optical phase conjugate copier because the optical phase conjugate copier requires high quality optical carrier regeneration to recover the pump and optical PLL to maintain phase matching between signal and pump. Therefore, the use of DSP to process the signal and idler at receiver end greatly simplifies the system setup, increases the system stability and decreases the system cost.
Abstract:
Systems and methods for reducing work conflicts is provided. The method includes receiving a vibrational signal from a utility pole; identifying a location and type of field work on the utility pole from one or more features of the vibrational signal utilizing a trained neural network; and communicating the location and type of field work to a third party.
Abstract:
Systems and methods for performing the dynamic anomaly localization of utility pole aerial/suspended/supported wires/cables by distributed fiber optic sensing. In sharp contrast to the prior art, our inventive systems and methods according to aspects of the present disclosure advantageously identify a “location region” on a utility pole supporting an affected wire/cable, thereby permitting the identification and reporting of service personnel that are uniquely responsible for responding to such anomalous condition(s).
Abstract:
A method of utility pole integrity assessment by distributed fiber optic sensing/distributed acoustic sensing (DFOS/DAS) employing existing telecommunications fiber optic cable as a sensor. The fiber optic cable is suspended aerially from a plurality of utility poles and a machine learning model is developed during training by mechanically exciting the utility poles. Once developed, and in sharp contrast to the prior art, the machine learning model—in conjunction with DFOS/DAS operation—determines an integrity assessment for a plurality of the utility poles aerially suspending the fiber optic cable from a mechanical impact of a single pole.
Abstract:
Aspects of the present disclosure describe distributed fiber optic sensing (DFOS) systems, methods, and structures that advantageously enable and/or facilitate the continuous monitoring and identification of damaged utility poles by employing a DFOS distributed acoustic sensing (DAS) methodology in conjunction with a finite element analysis and operational modal analysis. Of particular advantage and in further contrast to the prior art, systems, methods, and structures according to aspects of the present disclosure utilize existing optical fiber supported/suspended by the utility poles as a sensing medium for the DFOS/DAS operation.
Abstract:
Systems and methods for reducing work conflicts is provided. The method includes receiving a vibrational signal from a utility pole; identifying a location and type of field work on the utility pole from one or more features of the vibrational signal utilizing a trained neural network; and communicating the location and type of field work to a third party.
Abstract:
An advance in the art is made according to aspects of the present disclosure directed to the detection and localization of a substantially static weight situated on aerial telecommunications fiber optic cable through the effect of phase-distributed acoustic sensing (ϕ-DAS) and signal analysis of ambient data. In sharp contrast to the prior art, our inventive method does not require a special optical fiber arrangement or type of fiber nor is it susceptible to range limitations that plague the prior art.
Abstract:
A computer-implemented method for measuring gas concentration from a 2f signal in wavelength modulation spectroscopy is presented. The computer-implemented method includes emitting a beam of light from a laser to pass through a gas sample, calculating a gas measurement value from the gas sample via a trough distance calculator using a trough distance of a gas absorption line's 2f signal, calibrating the gas measurement value via a multi-point calibration process, and outputting the gas measurement value to a user interface of a computing device.
Abstract:
Systems and methods for generating a three-dimensional gas map includes a remote vehicle including reflective material. A positioning stage including multidimensional movement to track the remote vehicle. A light head to reflect light off of the remote vehicle. A controller to analyze received light to determine gas content and generate a three-dimensional gas map.