Abstract:
Structures and methods of generating 8-QAM signals through the effect of a cascaded I/Q modulator and Mach-Zhender modulator. The 8-QAM signals are generated by applying one binary sequence to the dual-drive Mach-Zehnder modulator (MZM) and two binary sequences to the I/Q modulator. Operationally, the I/Q modulator generates QPSK constellation(s), while the dual drive MZM either maintains the QPSK constellation at an out ring, or attenuates its amplitude to the inner ring and rotates its phase by π/4 phase depending on the binary data it was driven by.
Abstract:
Aspects of the present disclosure describe Rayleigh fading mitigation via short pulse coherent distributed acoustic sensing with multi-location beating-term combination. In illustrative configurations, systems, methods, and structures according to the present disclosure employ a two stage modulation arrangement providing short interrogator pulses resulting in a greater number of sensing data points and reduced effective sectional length. The increased number of data points are used to mitigate Rayleigh fading via a spatial combining process, multi-location-beating combining (MLBC) which uses weighted complex-valued DAS beating results from neighboring locations and aligns phase signals of each of the locations, before combining them to produce a final DAS phase measurement. Since Rayleigh scattering is a random statistic, the MLBC process allows capture of different statics from neighboring locations with correlated vibration/acoustic signal. The combined DAS results minimize a total Rayleigh fade, in both dynamic fading and static fading scenarios.
Abstract:
Aspects of the present disclosure describe systems, methods and structures in which a hybrid neural network combining a CNN and several ANNs are shown useful for predicting G-ONSR for Ps-256QAM raw data in deployed SSMF metro networks with 0.27 dB RMSE. As demonstrated, the CNN classifier is trained with 80.96% testing accuracy to identify channel shaping factor. Several ANN regression models are trained to estimate G-OSNR with 0.2 dB for channels with various constellation shaping.
Abstract:
An unrepeatered transmission system includes a receiver coupled to a receive span; a transmitter coupled to the receive span; and a plurality of cascaded amplifiers in the receive span with dedicated fiber cores to supply one or more optical pumps from the receiver to each amplifier, wherein the plurality of cascaded amplifiers increase system reach by increasing the length of a back span in an unrepeatered link.
Abstract:
Methods and systems for Brillouin optical time-domain reflectometry include optically filtering out non-Brillouin signals reflected from a fiber. Brillouin signals reflected from the fiber are coupled with a local oscillator to produce a Brillouin shift signals. The Brillouin shift signals are converted to an electrical domain using a photodetector. The electrical Brillouin shift signals are converted to a digital domain using a low-speed analog-to-digital converter that has a sampling rate below a Nyquist rate sufficient to fully resolve the electrical Brillouin shift signals.
Abstract:
A computer-implemented method for authenticating an access point attempting to access a wireless network is presented. The computer-implemented method includes receiving an authentication challenge from the access point, analyzing the authentication challenge at a wireless node by using an optical chaos generation module having an optical section and a radio frequency (RF) section to facilitate reproducibility, unpredictability, and unclonability of challenge-response pairs, and transmitting an authentication response to the access point.
Abstract:
Systems and methods are disclosed for data communication by performing RF sub-band multiplexing and demultiplexing by cascading a radio-frequency (RF) mixing module and optical dual-polarized (DP) QPSK modulator forhybrid RF/optical IQ modulation; and performing intra-transceiver optical superchannel switching through the RF sub-band multiplexing.
Abstract:
Systems and methods for optical communication are disclosed that include communicating data using one or more transceiver pairs coupled to a spatial-multiplexer (S-MUX); performing bi-directional transmissions over an elliptical core optical fiber to a spatial-demultiplexer (S-DEMUX) using spatial modes to communicate data in either direction between two transceiver pairs with low crosstalk and without optical circulators or wavelength-division multiplexing (WDM); and communicating data from the S-DEMUX with g one or more transceiver pairs.
Abstract:
A method of wavelength conversion without polarization tracking is provided. A system is also provided that converts an input signal into an output signal of a different wavelength that contains all of the amplitude, phase, and polarization information of the original signal. The method includes separating, using a polarization-diversity optical mixer, an input optical signal of a first wavelength into a plurality of electrical signals containing amplitudes and phases while maintaining the polarization information of the input signal, converting each of the amplitudes and phases into individual photo-currents using a photo-diode, converting each of the output photo-currents into voltages using an amplifier, modulating the multitude of voltages to a second wavelength using a modulator, where the separated electrical signals are up-converted to generate an output optical signal that maintains the same amplitude, phase, and polarization information as was contained in the input signal.
Abstract:
An automatic bias control tracking for all modulation formats in an optical modulator includes monitoring the average output optical power using a low-speed photodetector to adjust the modulator bias. Two-level DC dithering signals are applied to two DC ports individually in time to isolate the impact of the other port while adjusting the current DC bias, thus improving the accuracy and efficiency. The power monitoring of low-frequency RF power is utilized to find a quad-point, where the in-phase and quadrature are orthogonal with each other. The total output power is used as a rule when adjusting the phase bias.