Abstract:
Systems and methods for enabling a WLAN client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
Abstract:
Systems and methods for enabling a wireless local area network (WLAN) client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
Abstract:
A simultaneous client wireless device includes wireless modules configured to perform communication functions of a PHY (physical) layer for wireless radios operable in different bands. The simultaneous client wireless device also includes a communication module configured as an intermediate layer between the PHY layer of the wireless modules and a network layer. The communication module is configured to use an application programming interface to retrieve information from the PHY layer and write information to the PHY layer of the wireless modules, perform communication functions of upper MAC (media access control) and lower MAC layers for the wireless bands, and manage simultaneous communications over the wireless bands. The communications over the wireless bands can use a local area network protocol.
Abstract:
A dual band end fed dipole provides at least two distinct operating frequencies, e.g. 2.45 GHz and 5.5 GHz. Properties of the antenna include low cost to manufacture, e.g. ease of automation; minimal manual labor to manufacture, e.g. reliability; dual band operation; broad bandwidth; good feed line isolation; omnidirectional beam pattern; minimal vertical beam squint; small diameter; and high efficiency. Embodiments of the invention provide a dual band end fed dipole with a low band trap on the feed side that requires minimal manual labor to manufacture because the antenna is formed from a single flat sheet of metal and soldering is replaced with crimping. Minimal dielectric loading is also achieved.
Abstract:
Disclosed are improved antenna structures, systems, and methods of manufacturing. In an embodiment, low-cost internal 2G/5G antennas have flat metal dipole construction, which can include a stiffener. External embodiments include quad dipole antenna structures, with broadside or corner arrays. Isolated multi-band center or end-fed dipole antennas can include single-sided PCB or metal-only structures, for operation with at least two distinct frequencies, and can provide RF isolation, such as with an RF trap or a Balun system. Embodiments of non-DC path or pass-through dual band antennas feature trap structures, along with discrete or distributed matching, and can provide a DC feed path for LEDs. Low profile and flat vertically polarized omni-directional antennas, such as for operation at 915 MHz, include an open slot driven cavity. Stacked 2G/5G antenna structures provide axial symmetry between quadrants. Improved construction methods and antenna structures include enhanced thin metal components and low cost, crimp-only construction methods.
Abstract:
A simultaneous client wireless device includes a communication module configured as a layer under a network layer, and configured to receive packets for processing from the network layer and communicate processed packets to the network layer. The communication module is further configured to perform communication functions of an upper MAC (media access control) layer, a lower MAC layer, and a PHY (physical) layer for wireless radios operable in different wireless bands, and manage simultaneous communications over the wireless bands. The communications over the wireless bands can use a local area network protocol.
Abstract:
A simultaneous client wireless device includes wireless modules configured to perform communication functions of a PHY (physical) layer for wireless radios operable in different bands. The simultaneous client wireless device also includes a communication module configured as an intermediate layer between the PHY layer of the wireless modules and a network layer. The communication module is configured to use an application programming interface to retrieve information from the PHY layer and write information to the PHY layer of the wireless modules, perform communication functions of upper MAC (media access control) and lower MAC layers for the wireless bands, and manage simultaneous communications over the wireless bands. The communications over the wireless bands can use a local area network protocol.
Abstract:
Antenna designs are disclosed that exhibit both high bandwidth and efficiency. A first aspect of the invention concerns the form factor of the antenna; a second aspect of the invention concerns the ease with which the antenna is manufactured; and a third aspect concerns the superior performance exhibits by the antenna across a large bandwidth.
Abstract:
Systems and methods for enabling a WLAN client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
Abstract:
Embodiments of the invention provide several antenna designs that exhibit both high bandwidth and efficiency, such as for operation in one or more bands, such as but not limited to operation in 3G, 4G, LTE bands. A first aspect of the invention concerns the form factor of the enhanced antenna; a second aspect of the invention concerns the ease with which the enhanced antenna is manufactured; and a third aspect concerns the superior performance exhibited by the enhanced antenna across one or more bandwidths.