Abstract:
Disclosed is a CT imaging method and system. The method includes: CT scanning an object with a dual-energy CT system to obtain a first complete set of projection data in a first scan mode, and to obtain a second incomplete set of projection data in a second scan mode; reconstructing a first attenuation coefficient image of the object from the first set of projection data, and extracting, from the first attenuation coefficient image, prior structure information of the object indicating edge intensity; and reconstructing a second attenuation coefficient image of the object from the second incomplete set of projection data using the extracted prior structure information as a constraint. With the method using the prior structure information of the imaged object as a constraint in reconstruction, it is possible to dramatically reduce an amount of data required for reconstruction, and achieve satisfactory effects even with ill-conditioned problems of limited-angle and inner reconstruction.
Abstract:
An X-ray detection method and an X-ray detector are provided. The X-ray detection method according to embodiments of the present disclosure includes: dividing an energy range of photons emitted by an X-ray source into a number N of energy windows, where N is an integer greater than 0; obtaining a weighting factor for each of the number N of energy windows based on linear attenuation coefficients of a substance of interest and a background substance of an imaging target; obtaining a weighting factor matrix for M output channels of an X-ray detector based on the weighting factor for each of the number N of energy windows, where M is an integer greater than 0; and obtaining output results of the M output channels based on the weighting factor matrix and numbers of photons having an energy range falling into individual energy windows of the number N of energy windows.
Abstract:
The present disclosure discloses a ray transmission and fluorescence CT imaging system and method. The system comprises: a ray source configured to emit a beam of rays; a rotational scanning device configured to perform rotational CT scanning on an object to be inspected; a transmission CT detector configured to receive the beam of rays which has passed through the object; a fluorescence CT detector configured to receive fluorescent photons excited by irradiation of the beam of rays on the object; a data acquisition unit configured to acquire a transmission data signal and a fluorescence data signal respectively; and a control and data processing unit configured to control the ray source to emit the beam of rays, control the rotational scanning device to perform the rotational CT scanning, and obtain a transmission CT image and a fluorescence CT image simultaneously based on the transmission data signal and the fluorescence data signal.
Abstract:
A method and device for reconstructing a CT image and a storage medium are disclosed. CT scanning is performed on an object to be inspected to obtain projection data. The projection data is processed using a first convolutional neural network to obtain processed projection data. The first convolutional neural network comprises a plurality of convolutional layers. A back-projection operation is performed on the processed projection data to obtain a reconstructed image.
Abstract:
The present disclosure provides a low-angle self-swinging type computed tomography (CT) apparatus, which is provided with an X-ray accelerator and a plurality of rows of detectors and is configured to include a slip ring, such that the slip ring with the accelerator and the detectors thereon is capable of performing a single-pendulum reciprocating movement while an objected to be inspected passes through the slip ring, a three dimension CT image of the object is displayed, thereby achieving accurate inspection for large-scale objects, such as van containers.
Abstract:
The present disclosure provides a low-angle self-swinging type computed tomography (CT) apparatus, which is provided with an X-ray accelerator and a plurality of rows of detectors and is configured to include a slip ring, such that the slip ring with the accelerator and the detectors thereon is capable of performing a single-pendulum reciprocating movement while an objected to be inspected passes through the slip ring, a three dimension CT image of the object is displayed, thereby achieving accurate inspection for large-scale objects, such as van containers.
Abstract:
The present disclosure relates to a self-prior information based X-ray dual-energy CT reconstruction method, which can utilize information inherent in data to provide a prior model, thereby obtaining a reconstructed image with a high quality. The X-ray dual-energy CT reconstruction method according to the present disclosure comprises: (a) rating an energy spectrum and establishing a dual-energy lookup table; (b) collecting high-energy data pH and low-energy data pL of a dual-energy CT imaging system using a detector of the dual-energy CT imaging system; (c) obtaining projection images R1 and R2 of scaled images r1 and r2 according to the obtained high-energy data pH and low-energy data pL; (d) reconstructing the scaled image r2 using a first piece-wise smooth constraint condition and thereby obtaining an electron density image; and (e) reconstructing the scaled image r1 using a second piece-wise smooth constraint condition and thereby obtaining an equivalent atomic number image. In the present disclosure, the noise in the dual-energy reconstructed image can be effectively prohibited while keeping the resolution by effectively using information inherent in data.
Abstract:
The present invention discloses a human body security inspection apparatus and a corresponding method. Specifically, the apparatus comprises: a human body security inspection device (1), configured to scan the human to be inspected (2) in order to inspect whether the human to be inspected (2) carries prohibited articles; a KINECT sensor (3), configured to real-timely acquire information about the human to be inspected (2) so that the human body security inspection device (1) is capable of real-timely acquiring the information of the human to be inspected (2) by means of the KINECT sensor (3), so as to determine whether the information conforms to requirements of the human body security inspection device (1); and a data processing device (4), configured to communicate with the human body security inspection device (1) and the KINECT sensor (3), in order to real-timely analyse and process the information of the human to be inspected (2).