Abstract:
Disclosed is a CT imaging method and system. The method includes: CT scanning an object with a dual-energy CT system to obtain a first complete set of projection data in a first scan mode, and to obtain a second incomplete set of projection data in a second scan mode; reconstructing a first attenuation coefficient image of the object from the first set of projection data, and extracting, from the first attenuation coefficient image, prior structure information of the object indicating edge intensity; and reconstructing a second attenuation coefficient image of the object from the second incomplete set of projection data using the extracted prior structure information as a constraint. With the method using the prior structure information of the imaged object as a constraint in reconstruction, it is possible to dramatically reduce an amount of data required for reconstruction, and achieve satisfactory effects even with ill-conditioned problems of limited-angle and inner reconstruction.
Abstract:
The disclosure provides a scanning imaging system for security inspection of an object and an imaging method thereof, the system comprising: a conveying unit configured for bringing the object to move along a conveying direction; a plurality of radiographic sources at one side of the conveying unit, being arranged successively in a direction vertical to a plane, in which the conveying unit is located, and configured for alternately emitting ray beams to form a scanning area; a linear detector array at the other side of the conveying unit, being configured for detecting first projection images, which are formed after the ray beams emitted by the plurality of radiographic sources penetrate through the object, in the process of the object passing through the scanning area; an imaging unit configured for obtaining a first reconstructed image of the object based on the first projection images of the plurality of radiographic sources.
Abstract:
A spectral CT image reconstructing method includes: collecting incomplete original projection data in each of a plurality of energy windows; performing a projection data cross estimation using corresponding original projection data in at least one pair of energy windows constituted by different energy windows of the plurality of energy windows to obtain estimated projection data, wherein each pair of energy windows comprises a first energy window and a second energy window; combining the original projection data and the corresponding estimated projection data to obtain complete projection data; and reconstructing a spectral CT image using the complete projection data.
Abstract:
A radiation protection arrangement, including: a housing, the housing including a first port and a second port; and a tray, the tray having an accommodation space. The tray is allowed to pass through a channel within the housing. The tray has a first end wall, a second end wall, and a bottom portion connected between the first end wall and the second end wall. A shape of the first end wall and/or a shape of the second end wall are/is configured to fit with an inner wall of the housing, so as to block a radiation from leaving the channel from the accommodation space through the second port or the first port. Further provided is a security inspection device, including the radiation protection arrangement.
Abstract:
An image processing method, comprising: acquiring, by a CT scanning system, projection data of an object; and processing, by using a convolutional neural network, the projection data, to acquire an estimated image of the object. The convolutional neural network comprises: a projection domain network for processing input projection data to obtain estimated projection data; an analytical reconstruction network layer for performing analytical reconstruction to obtain a reconstructed image; an image domain network for processing the reconstructed image to obtain an estimated image, a projection layer for performing a projection operation by using a system projection matrix of the CT scanning system, to obtain a projection result of the estimated image; and a statistical model layer for determining consistency among the input projection data, the estimated projection data, and the projection result of the estimated image based on a statistical model.
Abstract:
The disclosure relates to a grating and a radiation imaging device. The grating comprises a plurality of stacked grating elements. The grating elements are stacked to form a grid. The grating element comprises a first sheet and a second sheet having two parallel planes. The second sheet is stacked at the first sheet in a length direction of the first sheet. The first sheet is almost impervious to radiation. The present disclosure stacks the sheets having different specifications together to form the grating with uniform grating slits, such that there is no limitation on the thickness of the grating and the grating can be used along with high-energy radiations.
Abstract:
The present disclosure discloses a detector device comprising a plurality of detector assemblies. Each detector assembly comprises at least one detection crystal units having a first energy response and those having a second energy response, which are both arranged along a first direction at intervals, each detection crystal unit having a first/second energy response including at least one detection crystals having a first/second energy response arranged along a second direction. The at least one detection crystal units having a first energy response and the at least one detection crystal units having a second energy response are, at least partially, alternatively arranged along the first direction when viewed from an incidence direction of the X-ray. The present disclosure also discloses a dual energy CT system having the detector device and a CT detection method using this system.
Abstract:
A multi-channel static CT device is provided, and the multi-channel static CT device includes: a scanning channel including a plurality of scanning sub-channels; a distributed X-ray source including a plurality of ray emission points arranged around the scanning channel; and a detector module including a plurality of detectors arranged around the scanning channel, wherein the plurality of detectors are arranged corresponding to the plurality of ray emission points.
Abstract:
An X-ray detection method and an X-ray detector are provided. The X-ray detection method according to embodiments of the present disclosure includes: dividing an energy range of photons emitted by an X-ray source into a number N of energy windows, where N is an integer greater than 0; obtaining a weighting factor for each of the number N of energy windows based on linear attenuation coefficients of a substance of interest and a background substance of an imaging target; obtaining a weighting factor matrix for M output channels of an X-ray detector based on the weighting factor for each of the number N of energy windows, where M is an integer greater than 0; and obtaining output results of the M output channels based on the weighting factor matrix and numbers of photons having an energy range falling into individual energy windows of the number N of energy windows.
Abstract:
Multi-spectral static CT apparatuses are disclosed. The apparatus includes a ray source in a form of multiple distributed spots, multiple columns of detectors, a data acquisition device, an article carrying and control device, and a multi-spectral projection data processing device. An object of the present disclosure is to combine static CT scanning technology with multi-spectral analysis technology. It has an advantage of a static CT system, such as high scanning speed, simple mechanic structure, and/or cost reduction due to omission of slip ring. It also can perform identification of material in an article, and can be widely applied in occasions such as safety inspection, and smuggling suppression at customs.