Abstract:
Latency of in-system test (IST) execution for a hardware component of an in-field (deployed) computing platform may be reduced when a value of a physical operating parameter can be changed without rebooting the computing platform. A test (e.g., patterns or vectors) is executed for varying values of the physical operating parameter (e.g., supply voltage, clock speed, temperature, noise magnitude/duration, operating current, and the like), providing the ability to detect faults in the hardware components.
Abstract:
A test system and method for selecting a derating factor to be applied to a ratio of transistors having disparate electrical characteristics in a wafer fabrication process. In one embodiment, the test system includes: (1) structural at-speed automated test equipment (ATE) operable to iterate structural at-speed tests at multiple clock frequencies over integrated circuit (IC) samples fabricated under different process conditions and (2) derating factor selection circuitry coupled to the structural at-speed ATE and configured to employ results of the structural at-speed tests to identify performance deterioration in the samples, the performance deterioration indicating the derating factor to be employed in a subsequent wafer fabrication process.
Abstract:
A wafer acceptance test (WAT) system and method that, in one embodiment, includes: (1) a saturation current WAT subsystem operable to generate a weighted standard deviation based on target NMOS and PMOS saturation currents and saturation current WAT results, (2) a wafer IC speed WAT subsystem operable to generate a speed performance probability distribution of wafer ICs based on the weighted standard deviation and speed WAT results, (3) a wafer IC power WAT subsystem operable to employ the speed WAT results and power WAT results to generate a power performance model of wafer ICs, and (4) a yield calculator operable to generate a power performance variance probability distribution of wafer ICs based on the power performance model and the power WAT results, and to employ the speed performance probability distribution and the power performance variance probability distribution to generate the yield forecast with respect to a target performance profile.