SEGMENTATION OF LIDAR RANGE IMAGES
    11.
    发明申请

    公开(公告)号:US20210342608A1

    公开(公告)日:2021-11-04

    申请号:US17377053

    申请日:2021-07-15

    Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.

    Analysis of point cloud data using depth maps

    公开(公告)号:US11301697B2

    公开(公告)日:2022-04-12

    申请号:US16938473

    申请日:2020-07-24

    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improved techniques for processing the point cloud data that has been collected. The improved techniques include mapping 3D point cloud data points into a 2D depth map, fetching a group of the mapped 3D point cloud data points that are within a bounded window of the 2D depth map; and generating geometric space parameters based on the group of the mapped 3D point cloud data points. The generated geometric space parameters may be used for object motion, obstacle detection, freespace detection, and/or landmark detection for an area surrounding a vehicle.

    MAP CREATION AND LOCALIZATION FOR AUTONOMOUS DRIVING APPLICATIONS

    公开(公告)号:US20210063198A1

    公开(公告)日:2021-03-04

    申请号:US17008074

    申请日:2020-08-31

    Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.

    Analysis of point cloud data using depth and texture maps

    公开(公告)号:US10776983B2

    公开(公告)日:2020-09-15

    申请号:US16051263

    申请日:2018-07-31

    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include analyzing point cloud data using trajectory equations, depth maps, and texture maps. The processing improvements also include representing the point cloud data by a two dimensional depth map or a texture map and using the depth map or texture map to provide object motion, obstacle detection, freespace detection, and landmark detection for an area surrounding a vehicle.

Patent Agency Ranking