Abstract:
An integrated circuit such as, for example a graphics processing unit (GPU), includes a dynamic power controller for adjusting operating voltage and/or frequency. The controller may receive current power used by the integrated circuit and a predicted power determined based on instructions pending in a plurality of processors. The controller determines adjustments that need to be made to the operating voltage and/or frequency to minimize the difference between the current power and the predicted power. An in-system reinforced learning mechanism is included to self-tune parameters of the controller.
Abstract:
In various examples, one or more components or regions of a processing unit—such as a processing core, and/or component thereof—may be tested for faults during deployment in the field. To perform testing while in deployment, the state of a component subject to test may be retrieved and/or stored during the test to maintain state integrity, the component may be clamped to communicatively isolate the component from other components of the processing unit, a test vector may be applied to the component, and the output of the component may be compared against an expected output to determine if any faults are present. The state of the component may be restored after testing, and the clamp removed, thereby returning the component to its operating state without a perceivable detriment to operation of the processing unit in deployment.
Abstract:
In various examples, one or more components or regions of a processing unit—such as a processing core, and/or component thereof—may be tested for faults during deployment in the field. To perform testing while in deployment, the state of a component subject to test may be retrieved and/or stored during the test to maintain state integrity, the component may be clamped to communicatively isolate the component from other components of the processing unit, a test vector may be applied to the component, and the output of the component may be compared against an expected output to determine if any faults are present. The state of the component may be restored after testing, and the clamp removed, thereby returning the component to its operating state without a perceivable detriment to operation of the processing unit in deployment.
Abstract:
In various examples, one or more components or regions of a processing unit—such as a processing core, and/or component thereof—may be tested for faults during deployment in the field. To perform testing while in deployment, the state of a component subject to test may be retrieved and/or stored during the test to maintain state integrity, the component may be clamped to communicatively isolate the component from other components of the processing unit, a test vector may be applied to the component, and the output of the component may be compared against an expected output to determine if any faults are present. The state of the component may be restored after testing, and the clamp removed, thereby returning the component to its operating state without a perceivable detriment to operation of the processing unit in deployment.
Abstract:
A hierarchy of interconnected memory retention (MR) circuits detect a clock gating mode being entered at any level of an integrated circuit. In response, the hierarchy automatically transitions memory at the clock gated level and all levels below the clock-gated level from a normal operating state to a memory retention state. When a memory transitions from a normal operating state to a memory retention state, the memory transitions from a higher power state (corresponding to the normal operating state) to a lower power state (corresponding to the memory retention state). Thus, in addition to the dynamic power savings caused by the clock gating mode, the hierarchy of MR circuits automatically transitions the memory modules at the clock gated level and all levels below the clock gated level to a lower power state. As a result, the leakage power consumption of the corresponding memory modules is reduced relative to prior approaches.
Abstract:
A true random number generator, a method of generating a true random number and a system incorporating the generator or the method. In one embodiment, the generator includes: (1) a ring oscillator including inverting gates having power inputs and (2) a time-varying power supply coupled to the power inputs to provide power thereto and including power perturbation circuitry operable to perturb the power provided to at least one of the power inputs.