Abstract:
A true random number generator, a method of generating a true random number and a system incorporating the generator or the method. In one embodiment, the generator includes: (1) a ring oscillator including inverting gates having power inputs and (2) a time-varying power supply coupled to the power inputs to provide power thereto and including power perturbation circuitry operable to perturb the power provided to at least one of the power inputs.
Abstract:
In various examples, one or more components or regions of a processing unit-such as a processing core, and/or component thereof—may be tested for faults during deployment in the field. To perform testing while in deployment, the state of a component subject to test may be retrieved and/or stored during the test to maintain state integrity, the component may be clamped to communicatively isolate the component from other components of the processing unit, a test vector may be applied to the component, and the output of the component may be compared against an expected output to determine if any faults are present. The state of the component may be restored after testing, and the clamp removed, thereby returning the component to its operating state without a perceivable detriment to operation of the processing unit in deployment.
Abstract:
An integrated circuit such as, for example a graphics processing unit (GPU), having an on-chip analog to digital converter (ADC) for use in overcurrent protection of the chip is described, where the overcurrent protection response times are substantially faster than techniques with external ADC. A system-on-chip (SoC) includes the integrated circuit and a multiplexer arranged externally to the chip having the ADC, where the multiplexer provides the ADC with a data stream of sampling information from a plurality of power sources. Methods for overcurrent protection using an on-chip ADC are also described.
Abstract:
A true random number generator, a method of generating a true random number and a system incorporating the generator or the method. In one embodiment, the generator includes: (1) a ring oscillator including inverting gates having power inputs and (2) a time-varying power supply coupled to the power inputs to provide power thereto and including power perturbation circuitry operable to perturb the power provided to at least one of the power inputs.
Abstract:
An optimized power saving technique is described for a processor, such as, for example, a graphic processing unit (GPU), which includes one or more processing cores and at least one data link interface. According to the technique, the processor is operable in a low power mode in which power to the at least one processing core is off and power to the at least one data link interface is on. This technique provides reduced exit latencies compared to currently available approaches in which the core power is turned off.
Abstract:
In various examples, one or more components or regions of a processing unit—such as a processing core, and/or component thereof—may be tested for faults during deployment in the field. To perform testing while in deployment, the state of a component subject to test may be retrieved and/or stored during the test to maintain state integrity, the component may be clamped to communicatively isolate the component from other components of the processing unit, a test vector may be applied to the component, and the output of the component may be compared against an expected output to determine if any faults are present. The state of the component may be restored after testing, and the clamp removed, thereby returning the component to its operating state without a perceivable detriment to operation of the processing unit in deployment.
Abstract:
Introduced herein is an improved technique of recovering system frequency margin via distributed CPMs. The introduced technique creates and distributes multiple sets of always sensitized critical path replicas across a chip and monitors them for timing failure. The introduced technique takes feedback from these critical path replicas and dynamically boosts the clock frequency of the chip to remove the margin. The introduced technique provides more accurate and more comprehensive coverage of a chip performance.
Abstract:
A true random number generator, a method of generating a true random number and a system incorporating the generator or the method. In one embodiment, the generator includes: (1) a ring oscillator including inverting gates having power inputs and (2) a time-varying power supply coupled to the power inputs to provide power thereto and including power perturbation circuitry operable to perturb the power provided to at least one of the power inputs.
Abstract:
In various examples, one or more components or regions of a processing unit—such as a processing core, and/or component thereof—may be tested for faults during deployment in the field. To perform testing while in deployment, the state of a component subject to test may be retrieved and/or stored during the test to maintain state integrity, the component may be clamped to communicatively isolate the component from other components of the processing unit, a test vector may be applied to the component, and the output of the component may be compared against an expected output to determine if any faults are present. The state of the component may be restored after testing, and the clamp removed, thereby returning the component to its operating state without a perceivable detriment to operation of the processing unit in deployment.
Abstract:
In various examples, one or more components or regions of a processing unit—such as a processing core, and/or component thereof—may be tested for faults during deployment in the field. To perform testing while in deployment, the state of a component subject to test may be retrieved and/or stored during the test to maintain state integrity, the component may be clamped to communicatively isolate the component from other components of the processing unit, a test vector may be applied to the component, and the output of the component may be compared against an expected output to determine if any faults are present. The state of the component may be restored after testing, and the clamp removed, thereby returning the component to its operating state without a perceivable detriment to operation of the processing unit in deployment.