Abstract:
High speed readout is achieved in a triangulation ranger by a coded aperture light detector which provides a direct digital representation of a range or height position. A light spot reflected from the surface is optically spread into a line segment so it can be shared among a number of light detection channels. The line of light falls on a coded aperture in front of a segmented fiber optic bundle and the light transmitted by each channel is led to a separate photomultiplier or solid state detector. Every coded channel is constructed to give one bit of the digital address of the range position, and a reference light value is obtained from another channel. Background and secondary reflections may be filtered out by focusing light scattered from the surface to a spot and passing it through a slit aperture oriented in the plane of triangulation before being spread to a line segment.
Abstract:
A two-valued height-based image of an object on a support surface is acquired in one frame time of a raster scan, television-like camera. Two rotating sheets of light projected by synchronized sources intersect at the supporting surface and form a moving light bar. The image of light bars incident on a 3D object is discontinuous because of the parallax effect. The light bar illuminates and sweeps out a rectangular area in step with the electronic scan of the scene imager.
Abstract:
A portable, low-cost, bichannel image processing and enhancement system t can be programmed to accept two video sources, operate upon one or both simultaneously and deliver an enhanced result to a color monitor. The operations that can be performed on each source include, for example, unity gain, logarithmic amplification and differentiation, and both outputs thereafter can be subjected to such arithmetic operations as addition, subtraction and multiplication. The results are passed through an electronic user programmed window, color encoded by a quantizer and then displayed on a color monitor. The processor includes an area measurement circuit which quantitatively measures the percentage of the screen covered by any of the levels used in the quantizer, a luminance distribution analyzer which generates an histogram approximation to the distribution of grey levels in the image and a luminance cross-section analyzer which displays a graph of the image luminance along a vertical line.
Abstract:
A contactor device includes a magnetic latch apparatus to reduce bounce between contact pads on closing. The magnetic latch apparatus includes a first magnet assembly and a second magnet assembly disposed so as to magnetically latch the first contact pad and second contact pad in the closed position. The first and second magnet assemblies typically are disposed respectively on the first contact pad carrier and second contact pad carrier such that the distance between the first and second magnet assemblies corresponds to the distance between the first and second contact pads. The magnet assemblies have a latch element that is a permanent magnet, an electromagnet, or a magnetically attracted material. A method of securing together a first and a second contact pad in a contactor device in accordance with this invention includes the step of disposing a first magnet assembly in a latch position with respect to a second magnet assembly in correspondence with the positioning of the first contact pad in a closed position with respect to the second contact pad and magnetically latching the first and second magnet assemblies together so as to maintain the first and second contact pads in the closed position.
Abstract:
A 3D model of a subject is acquired. Sensors spatially located on the subject are displayed on the 3D model in their appropriate locations. An operator selects the proper viewing angle and sensors to monitor via input devices. A 3D modeler in a display processor provides an image viewed from the proper angle and identifies the selected sensors. The 3D modeler identifies the data channels which correspond to the selected sensors and provides these to a system control computer which then provides the samples for these data channels. The 3D modeler also identifies a screen location which pertains to the locations of the selected sensors on the model. A postage stamp trace unit receives the samples for the selected data channels and the screen locations pertaining to the selected sensor locations of the image of the model and produces a video signal representing a window having a number of real-time traces each pertaining to a sensor. The real-time traces are located at a screen location corresponding to the location of the sensor on the model. The video signal is provided to a video mixer, along with a high resolution window of the same traces. This allows the operator to simultaneously view the relative spatial location of the sensor signals, as well as the sensor signals. Another window also provides the status of processors in the system.
Abstract:
An enhanced reality maintenance system for operating in a hazardous or inaccessible environment employs an environment modeler which is supplied with spatial parameters of a given environment and creates a computer model of the environment. An environment renderer creates a plurality of images, each corresponding to a viewing location and orientation, `viewpoint`. A remotely operated vehicle (ROV) attached to a base unit by a tether cord or radio link navigates in the environment. The ROV has a spatial imaging device, such as a video camera, and actuators which propel it through the environment. Its position and orientation are determined by a position and attitude (P&A) sensing unit, and are passed to an ROV renderer which creates an image of a prestored model of the ROV having the same location and orientation as the ROV and viewed from a specified viewpoint. The viewpoints may be predetermined, provided to the system or may be interactively determined as an offset from the ROV position and orientation. Alternative embodiments include an image archive and comparison unit capable of storing images linked to information of the image acquisition, retrieving stored images with the image acquisition into and transforming one of the images to match the image acquisition information of the other image. Also, another embodiment employs an automated flight planner, which receives desired destinations from an operator, analyzes the environment and ROV models, and navigates the ROV through the desired trajectory without collision.
Abstract:
An apparatus for real-time tracking of a catheter guide wire in a patient undergoing an interventional radiological procedure includes an image processing unit for processing digitized fluoroscopic images from a fluoroscope image output. The image processor utilizes a novel algorithm for locating the image of a catheter in the fluoroscopic image. The image processor creates a two-dimensional model of the catheter for dynamic display on an operating room live image video monitor.
Abstract:
An integrated system for real-time navigation assist during interventional radiological procedures utilizes a two-dimensional model of a catheter guide wire, obtained by performing image analysis on a fluoroscopic image in realtime, and a three-dimensional model of a patient's vascular system. The system backprojects the two-dimensional model into the three dimensional model and provides a three-dimensional display of the catheter in a patient's vascular system in real-time.
Abstract:
A variable depth triangulation ranging system is reconfigurable in real time in the sense that any two of the three performance measures, standoff distance, depth of field, and range resolution at a point within the depth of field, are selected by the user and the system geometrically reconfigures itself to provide the requested performance. The system is composed of a light beam emitting component such as a laser, a linear photodetector, and an imaging lens component. Any of these components has a fixed location and the other two are movable and positioned so that the Scheimpflug condition to guarantee blur-free imaging of reflected target returns is satisfied; the laser beam, a plane axis through the imaging lens component, and an image line through the photodetector all intersect at a common point. A scanner assembly is added to scan the laser beam along a line and over an area.
Abstract:
A computationally efficient technique to determine weld puddle area and maximum width in real time from noisy measurements of the puddle trailing edge. Using the torch electrode as the origin, image intensities are sampled in radial directions, and potential pool edge points are extracted. The boundary data is prefiltered to remove extraneous points, and a least-squares algorithm is used to estimate the area and width of the elliptical puddle. The values are sent to a vision-based arc welding robot control system which regulates these pool parameters to assure full penetration welds. Angular orientation of the weld puddle is estimated in an analogous manner.