摘要:
A cell controller with excellent reliability in which noise and soon are suppressed is provided. The cell controller includes, corresponding to the number of cell packs, a plurality of ICs each having a voltage detecting circuit detecting voltages of respective cells of a cell pack in which four cells are connected in series, a switch control circuit controlling conduction and a blocking operation of a plurality of switch elements connected in parallel to the respective cells via capacity adjusting resistors, a LIN1 terminal for inputting control information, a LIN2 terminal for outputting control information, a Vcc terminal and a GND terminal, and a LIN2 terminal of a higher-order IC and a LIN1 terminal of a lower-order IC are connected in a daisy chain. The Vcc terminal of each IC is connected to a positive electrode of a higher-order cell among cells constituting a corresponding cell pack via an inductor L for eliminating noise, and the GND terminal is coupled directly to the Vcc terminal of the lower-order IC. Noise is not superposed on the LIN1, LIN2 terminals.
摘要:
A suppressed noise cell controller includes, corresponding to a number of cell packs, a plurality of ICs each having a voltage detecting circuit detecting voltages of respective cells of a cell pack in which four cells are connected in series, a switch control circuit controlling conduction and a blocking operation of a plurality of switch elements connected in parallel to the respective cells via capacity adjusting resistors, terminal LIN1 for inputting control information, terminal LIN2 for outputting control information, terminal Vcc and GND terminal, and terminal LIN2 of a higher-order IC and terminal LIN1 of a lower-order IC are daisy chain connected. The Vcc terminal of each IC is connected to a positive electrode of a higher-order cell among cells constituting a corresponding cell pack via a noise eliminating inductor, and the GND terminal is coupled directly to Vcc of the lower-order IC. Noise isn't superposed on LIN1 or LIN2.
摘要:
Lower order control devices control plural battery cells configuring plural battery modules. An input terminal of the low order control device in the highest potential, an output terminal of the low order control device in the lowest potential, and a high order control device are connected by isolating units, photocouplers. Diodes which prevent a discharge current of the battery cells in the battery modules are disposed between the output terminal of the low order control device and the battery cells in the battery module on the low potential side. Terminals related to input/output of a signal are electrically connected without isolating among the plural low order control devices.
摘要:
A cell controller having excellent productivity is provided. A cell-con 80 has 12 ICs IC-1 to IC-12 mounted on a substrate, and these ICs detect voltages of respective cells constituting a cell pack, perform capacity adjustment on the respective cells, and are mounted two by two on rectangular longer sides of a rectangular continuous straight line L-L′ defined on a substrate from the IC-1 on a highest potential side to the IC-12 on a lowest potential side continuously in order of potential differences of the corresponding cell packs. Distances between the rectangular shorter sides of the rectangular continuous straight line L-L′ are the same. On the cell-con 80, between the IC-1 to IC-12 having different ground voltages, each of the ICs has signal output terminals connected to signal input terminals of a lower order IC respectively in an electrically non-insulated state.
摘要:
A battery management system which can output a battery state enabling optimum charge and discharge control to be performed even when a temperature variation occurs among individual single cells. A plurality of temperature sensors measure temperature values of a battery. A measurement unit measures a voltage and a current of the battery. A maximum/minimum temperature selection unit in a calculation unit determines a maximum temperature and a minimum temperature from the temperature values measured by the temperature sensors. An available power calculation unit calculates respective values of maximum available charge and discharge powers or maximum available charge and discharge currents of the battery corresponding to the maximum temperature and the minimum temperature based on the voltage and the current of the battery. A selection unit selects and outputs smaller maximum available charge and discharge powers or smaller maximum available charge and discharge currents from the respective values of the maximum available charge and discharge powers or the maximum available charge and discharge currents of the battery corresponding to the maximum temperature and the minimum temperature, which are calculated by the calculation unit.
摘要:
A storage battery managing apparatus which ensures charge-discharge control of a storage battery in consideration of state variation of each unit cell even if the battery pack includes a number of component unit cells, and a vehicle controlling apparatus providing the same. A storage battery includes a plurality of chargeable-dischargeable unit cells connected in which battery management ICs detect the cell voltage of each unit cell, a voltage sensor detects a storage battery voltage and a current sensor detects currents to be charged and discharged in the storage battery. A degree of SOC imbalance is obtained by use of detected cell voltage of each unit cell when the storage battery is being neither charged nor discharged.
摘要:
A secondary battery module includes a battery information storage unit for storing electric characteristic information and usage history information of the secondary battery module. A battery information management device and a terminal device respectively include interfaces to be connected to the secondary battery module. The battery information management device is provided with a battery information database. The battery information management device is connected to the terminal device through a communications network. In this way, battery information stored in the battery information storage unit, which is acquired by the battery information management device and the terminal device, is accumulated in the battery information database. Moreover, the battery information management device grades the secondary battery module for reuse based on the battery information and a predetermined threshold.
摘要:
In a status detector for a power supply, a power supply, and an initial characteristic extracting device for use with the power supply, a measuring unit obtains measured values of at least current, voltage and temperature of the electricity accumulating unit. A processing unit executes status detection of the electricity accumulating unit by using the measured values and the characteristic information of the electricity accumulating unit which is stored in a memory unit. A discrepancy detecting unit detects the presence of a discrepancy away from a theoretical value when a result of the status detection is changed over a predetermined threshold or reversed with respect to the measured values. A modifying unit modifies the characteristic information depending on the detected discrepancy.
摘要:
Lower order control devices control plural battery cells configuring plural battery modules. An input terminal of the low order control device in the highest potential, an output terminal of the low order control device in the lowest potential, and a high order control device are connected by isolating units, photocouplers. Diodes which prevent a discharge current of the battery cells in the battery modules are disposed between the output terminal of the low order control device and the battery cells in the battery module on the low potential side. Terminals related to input/output of a signal are electrically connected without isolating among the plural low order control devices.
摘要:
A vehicle power supply device comprises a lithium battery module that includes a plurality of lithium battery cells, first control devices, voltage detection harnesses via which terminal voltages at individual lithium battery cells are input to the first control devices, a second control device and a signal transmission path through which signals are transmitted. The first control device comprises a selection circuit that selects terminal voltages at individual lithium battery cells, a voltage measurement circuit that measures the selected terminal voltages, balancing switches used to discharge individual lithium battery cells, a balancing switch control circuit that controls open/close of the balancing switches, and a diagnosis circuit for detecting an electrically abnormal connection in the detection harnesses.