Abstract:
A method is specified for operating an organic optoelectronic component, which has at least one organic light-emitting element having an organic functional layer stack with at least one organic light-emitting layer between two electrodes and at least one organic light-emitting element having an organic light-detecting layer. These elements are arranged on a common substrate in laterally adjacent area regions. The at least one organic light-detecting element detects ambient light, which is incident onto the organic optoelectronic component. The intensity of the light emitted by the at least one organic light-emitting element is regulated depending on a signal of the at least one organic light-detecting element with a characteristic signal form.
Abstract:
An organic optoelectronic component and a method for operating an organic optoelectronic component are disclosed. In an embodiment an organic optoelectronic component includes an organic light emitting element including an organic functional layer stack having an organic light emitting layer between two electrodes and an organic light detecting element including a first organic light detecting element including a first organic light detecting layer, and a second organic light detecting element including a second organic light detecting layer, wherein the organic light emitting element and the organic light detecting element are arranged laterally adjacent on a common substrate, wherein the first organic light detecting element is configured to detect ambient light, wherein the second organic light detecting layer of the second organic light detecting element is arranged between two non-transparent layers, the non-transparent layers shade the second organic light detecting layer of the second organic light detecting element from ambient light.
Abstract:
An optoelectronic device is provided which comprises a functional layer stack (6), an encapsulation layer (7) provided for encapsulating the layer stack, and at least one metal layer (8), wherein the functional layer stack comprises at least one organic active layer (63), which emits electromagnetic radiation when the device is in operation, the encapsulation layer completely covers the at least one organic active layer when viewed in plan view onto the layer stack, and the metal layer is arranged on a side of the encapsulation layer remote from the layer stack.
Abstract:
A storage vessel is provided for starting material for producing a layer on a substrate by means of a growth process in a coating installation. The storage vessel has an internal volume for the starting material, in which there is a temperature-compensating material which is inert with respect to the starting material. Furthermore, a coating installation having a storage vessel is specified.
Abstract:
An organic optoelectronic component and a method for operating the organic optoelectronic component are disclosed. In an embodiment the organic optoelectronic component includes at least one organic light emitting element including an organic functional layer stack having at least one organic light emitting layer between two electrodes and at least one organic light detecting element including at least one organic light detecting layer, wherein the at least one organic light detecting element and the at least one organic light emitting element are laterally arranged on a common substrate.
Abstract:
An organic light-emitting component (100) is specified, which comprises a carrier (1) and an organic layering sequence (2) arranged on the carrier (1). The organic layering sequence (2) comprises at least two organic layers, wherein at least one of the organic layers is designed as an emitting layer (23). The emitting layer (23) emits light (200) of a first wavelength range, which has an intensity maximum at a first wavelength. Further, the organic light-emitting component (100) comprises an anode (3) and a cathode (4) which provide the electrical contacting of the organic layering sequence (2). Further, the organic light-emitting component (100) has at least one nanoparticle layer (20), wherein one nanoparticle layer (20) is an organic layer of the organic layering sequence (2) provided with first nanoparticles (5). The first nanoparticles (5) have a refractive index (nN) that is smaller than at least one refractive index of an organic material of one of the organic layers. Further, at least one nanoparticle layer (20) is not in direct contact with the anode (3). In addition, the first nanoparticles (5) have a diameter that is smaller than one-fourth of the first wavelength at which the light (200) emitted by the emitting layer (23) has an intensity maximum.
Abstract:
An organic light-emitting diode includes a carrier substrate, a scattering layer, a first electrode, an organic layer sequence with at least one active layer, and a second electrode wherein all the components are arranged in the stated sequence, the scattering layer has a higher average refractive index than the organic layer sequence, the first electrode has at least n or at least n+1 non-metal layers and n metal layers, n is a natural number greater than or equal to 1 or greater than or equal to 2, and the non-metal layers and the metal layers succeed one another alternately.
Abstract:
An optoelectronic device is provided which comprises a functional layer stack (6), an encapsulation layer (7) provided for encapsulating the layer stack, and at least one metal layer (8), wherein the functional layer stack comprises at least one organic active layer (63), which emits electromagnetic radiation when the device is in operation, the encapsulation layer completely covers the at least one organic active layer when viewed in plan view onto the layer stack, and the metal layer is arranged on a side of the encapsulation layer remote from the layer stack.
Abstract:
A method is specified for operating an organic optoelectronic component, which has at least one organic light-emitting element having an organic functional layer stack with at least one organic light-emitting layer between two electrodes and at least one organic light-emitting element having an organic light-detecting layer. These elements are arranged on a common substrate in laterally adjacent area regions. The at least one organic light-detecting element detects ambient light, which is incident onto the organic optoelectronic component. The intensity of the light emitted by the at least one organic light-emitting element is regulated depending on a signal of the at least one organic light-detecting element with a characteristic signal form.
Abstract:
An organic optoelectronic component and a method for operating the organic optoelectronic component are disclosed. In an embodiment the organic optoelectronic component includes at least one organic light emitting element including an organic functional layer stack having at least one organic light emitting layer between two electrodes and at least one organic light detecting element including at least one organic light detecting layer, wherein the at least one organic light detecting element and the at least one organic light emitting element are laterally arranged on a common substrate.