Systems And Methods For Detecting Long Term Seasons

    公开(公告)号:US20240403719A1

    公开(公告)日:2024-12-05

    申请号:US18732481

    申请日:2024-06-03

    Abstract: Techniques for machine-learning of long-term seasonal patterns are disclosed. In some embodiments, a network service receives a set of time-series data that tracks metric values of at least one computing resource over time. Responsive to receiving the time-series data, the network service detects a subset of metric values that are outliers and associated with a plurality of timestamps. The network service maps the plurality of timestamps to one or more encodings of at least one encoding space that defines a plurality of encodings for different seasonal patterns. Based on the mapped encodings, the network service generates a representation of a seasonal pattern. Based on the representation of the seasonal pattern, the network service may perform one or more operations in association with the at least one computing resource.

    SYSTEMS AND METHODS FOR MULTIVARIATE ANOMALY DETECTION IN SOFTWARE MONITORING

    公开(公告)号:US20230075486A1

    公开(公告)日:2023-03-09

    申请号:US18055773

    申请日:2022-11-15

    Abstract: Techniques are disclosed for summarizing, diagnosing, and correcting the cause of anomalous behavior in computing systems. In some embodiments, a system identifies a plurality of time series that track different metrics over time for a set of one or more computing resources. The system detects a first set of anomalies in a first time series that tracks a first metric and assigns a different respective range of time to each anomaly. The system determines whether the respective range of time assigned to an anomaly overlaps with timestamps or ranges of time associated with anomalies from one or more other time series. The system generates at least one cluster that groups metrics based on how many anomalies have respective ranges of time and/or timestamps that overlap. The system may preform, based on the cluster, one or more automated actions for diagnosing or correcting a cause of anomalous behavior.

    Systems and methods for forecasting time series with variable seasonality

    公开(公告)号:US11138090B2

    公开(公告)日:2021-10-05

    申请号:US16168390

    申请日:2018-10-23

    Abstract: Techniques for training and evaluating seasonal forecasting models are disclosed. In some embodiments, a network service generates, in memory, a set of data structures that separate sample values by season type and season space. The set of data structures may include a first set of clusters corresponding to different season types in the first season space and a second set of clusters corresponding to different season types in the second season space. The network service merges two or more clusters the first set and/or second set of clusters. Clusters from the first set are not merged with clusters from the second set. After merging the clusters, the network service determines a trend pattern for each of the remaining clusters in the first and second set of clusters. The network service then generates a forecast for a metric of a computing resource based on the trend patterns for each remaining cluster.

    Multiscale method for predictive alerting

    公开(公告)号:US10915830B2

    公开(公告)日:2021-02-09

    申请号:US15643179

    申请日:2017-07-06

    Abstract: Techniques are described for generating predictive alerts. In one or more embodiments, a seasonal model is generated, the seasonal model representing one or more seasonal patterns within a first set of time-series data, the first set of time-series data comprising data points from a first range of time. A trend-based model is also generated to represent trending patterns within a second set of time-series data comprising data points from a second range of time that is different than the first range of time. A set of forecasted values is generated based on the seasonal model and the trend-based model. Responsive to determining that a set of alerting thresholds has been satisfied based on the set of forecasted values, an alert is generated.

    DATA DRIVEN METHODS AND SYSTEMS FOR WHAT IF ANALYSIS

    公开(公告)号:US20180349797A1

    公开(公告)日:2018-12-06

    申请号:US15612999

    申请日:2017-06-02

    Abstract: Techniques are described for applying what-f analytics to simulate performance of computing resources in cloud and other computing environments. In one or more embodiments, a plurality of time-series datasets are received including time-series datasets representing a plurality of demands on a resource and datasets representing performance metrics for a resource. Based on the datasets at least one demand propagation model and at least one resource prediction model are trained. Responsive to receiving an adjustment to a first set of one or more values associated with a first demand: (a) a second adjustment is generated for a second set of one or more values associated with a second demand; and (b) a third adjustment is generated for a third set of one or more values that is associated with the resource performance metric.

Patent Agency Ranking