Abstract:
The present invention relates generally to multimode optical fibers (MMFs) and methods for optimizing said MMFs for transmission for at least two optical wavelengths. In an embodiment, the present invention is a multimode optical fiber optimized for multi-wavelength transmission in communication systems utilizing VCSEL transceivers, where the MMF has a bandwidth designed to maximize channel reach for multiple wavelengths, and/or where the MMF minimizes for wavelength dependent optical power penalties at one or more wavelength.
Abstract:
A direct attached pluggable module with a cable attachment and actuation sub-assembly is described. The cable attachment and actuation sub-assembly can have a boot, crimp sleeve, core housing, actuator inner-housing, pull-grip, and springs. The cable attachment actuation and sub-assembly can combines the functions of cable retention, bend radius control and actuation into a single sub-assembly.
Abstract:
A multi-channel, multi-port optical tap coupler with an alignment base element, a pair of sub-assemblies located at opposite ends of the alignment base element, focusing elements located next to each sub-assembly, and an optical filter adjacent to, and in-between the focusing elements is described. The first sub-assembly has an array of waveguides with each waveguide having a radial offset and an azimuthal position with respect to a center axis of the array. The first array includes transmission waveguides and receiving waveguides and each receiving waveguide has a corresponding transmission wave guide that is separated by an azimuthal angle of 180 degrees. The second sub-assembly has a second array of waveguides including a wave guide having the same radial offset and the same azimuthal position for each of the transmission wave guides of the first array.
Abstract:
Methods for estimating the Effective Modal Bandwidth (EMB) of laser optimized Multimode Fiber (MMF) at a specified wavelength, λS, based on the measured EMB at a first reference measurement wavelength, λM. In these methods the Differential Mode Delay (DMD) of a MMF is measured and the Effective Modal Bandwidth (EMB) is computed at a first measurement wavelength. By extracting signal features such as centroids, peak power, pulse widths, and skews, as described in this disclosure, the EMB can be estimated at a second specified wavelength with different degrees of accuracy. The first method estimates the EMB at the second specified wavelength based on measurements at the reference wavelength. The second method predicts if the EMB at the second specified wavelength is equal or greater than a specified bandwidth limit.
Abstract:
An optical interconnection assembly and method for the deployment and scaling of optical networks employing Spine-and-Leaf architecture has Spine multi-fiber optical connectors and Leaf multi-fiber optical connectors. The Spine optical connectors of the interconnection assembly are optically connected to multi-fiber connectors of Spine switches via Spine patch cords. The leaf multi-fiber connectors are optically connected to Leaf multi-fiber connectors of Leaf switches via Leaf patch cords. A plurality of fiber optic cables in said interconnection assembly serves to optically connect every Spine multi-fiber connector to every Leaf multi-fiber connector so that every Spine switch is optically connected to every Leaf switch. The optical interconnection assembly facilitates the deployment of network Spine-and-Leaf interconnections and the ability to scale out the network by using simplified methods described in this disclosure.
Abstract:
A low latency free-space optical data communication channel has at least two opposing optical collimators for transmitting an optical communication signal in the form of a parallel beam across a free-space channel. The input of the collimators are multi-core optical fibers. Multiple cores of the multi-core optical fibers are positioned at the focal point of the two opposing optical collimators. The optical collimators image the communications signals in each of the cores of the multi-core fibers into the corresponding cores of the opposing multi-core fibers.
Abstract:
An optical fiber connector has a lens component and a fiber component. The lens component has at least one lens and an opening with at least one V-groove therein. The at least one lens is associated with the at least one V-groove. The fiber component is configured to be partially inserted into the lens component and has at least one bare fiber flexible retention feature configured to retain a fiber of a fiber optic cable within the at least one V-groove and also to align the fiber with the lens.
Abstract:
A test apparatus has at least one optical source, a high-speed photodetector, a microcontroller or processor, and electrical circuitry to power and drive the optical source, high-speed photodetector, and microcontroller or processor. The apparatus measures the frequency response and optical path length of a multimode optical fiber under test, utilizes a reference VCSEL spatial spectral launch condition and modal-chromatic dispersion interaction data to estimate the channels total modal-chromatic bandwidth of the fiber under test, and computes and presents the estimated maximum data rate the fiber under test can support.
Abstract:
A test apparatus has at least one optical source, a high-speed photodetector, a microcontroller or processor, and electrical circuitry to power and drive the optical source, high-speed photodetector, and microcontroller or processor. The apparatus measures the frequency response and optical path length of a multimode optical fiber under test, utilizes a reference VCSEL spatial spectral launch condition and modal-chromatic dispersion interaction data to estimate the channels total modal-chromatic bandwidth of the fiber under test, and computes and presents the estimated maximum data rate the fiber under test can support.
Abstract:
A test apparatus has at least one optical source, a high-speed photodetector, a microcontroller or processor, and electrical circuitry to power and drive the at least one optical source, photodetector, and microcontroller or processor and for measuring the frequency response of a multimode optical fiber under test. The test apparatus can utilize an optical pulse waveform with a light adapter to measure of the channel under test. It can also uses a correction method to de-embeed a chromatic bandwidth of the source from the encircled flux modal chromatic bandwidth. The correction method can use correction functions obtained for different type of VCSELs to estimate the optical channel bandwidth when used with VCSEL transceivers.