Abstract:
A capacitive finger navigation module including a pressure detection mode and a finger movement detection mode is provided. In the pressure detection mode, a finger press is detected to generate a continuous cursor movement signal. In the finger movement detection mode, a finger movement is detected to generate a single cursor movement signal.
Abstract:
A smart device having ability for rejecting mistaken touching is illustrated, which comprises a capacitive button module which comprises a contacting layer, a first electrode layer, a second electrode layer and an elastic layer. A first electrode of the first electrode layer and a second electrode of the second electrode layer form a first inductive capacitor, and the second electrode and a third electrode of the second electrode layer form a second inductive capacitor. When the elastic layer receives a pressure and generates a deformation, a pressing signal is generated according to a capacitance variation of the first inductive capacitor. When a conductor is close to or in contact with the contacting layer, a moving signal is generated according to a capacitance variation of the second inductive capacitor.
Abstract:
A light source assembly for an optical touch device includes a linear light source and a plurality of prism pillars. The linear light source includes a lighting surface having a first side along a first direction and a second side along a second direction for emitting light. The first side is longer than the second side, and the first direction intersects the second direction. The prism pillars are disposed adjacent to the lighting surface and arranged along the first direction. Each of the prism pillars includes a first surface adjacent to the lighting surface and two reflection surfaces tilted toward each other for reflecting the light. The first surface is connected to the two reflection surfaces and parallel to the lighting surface. Each of the first surfaces is for receiving the emitted light, and each of the first surfaces and one of the reflection surfaces form a first angle.
Abstract:
An image sensor comprising: an image sensing matrix, comprising at least one image sensing unit, for generating at least one image sensing signal according to a sensed image; an analog to digital converter, for converting the image sensing signal to a digital image sensing signal; an adjusting unit, for adjusting the digital image sensing signal to be an adjusted digital image sensing signal according to at least one adjusting parameter and the digital image sensing signal; an operational circuit, for computing at least part of brightness of the sensed image sensed by the image sensing unit according to the adjusted digital image sensing signal to generate at least one operational brightness signal; and a control unit, for adjusting the adjusting parameter, such that brightness information generated based on brightness values, which corresponds to the operational brightness signal, falls in a predetermined range.
Abstract:
There is provided a cleaning robot including a light source module and an image sensor. The light source module projects a horizontal line pattern toward a moving direction. The image sensor captures, toward the moving direction, an image of the horizontal line pattern. The light source module is arranged below the image sensor so as to eliminate the interference from second reflection.
Abstract:
An object position determining system comprising: at least one light source, configured to emit light; at least one optical sensor, configured to sense optical data generated based on reflected light of the light; and a processing circuit, configured to compute distance information between the optical sensor and an object which generates the reflected light. The processing circuit further determines a position of the object according to the distance information.
Abstract:
A capacitive touchpad is provided, which includes a substrate module, a plurality of sensing electrodes, a plurality of driving electrodes and a plurality of light-emitting diode (LED) dies. The plurality of sensing electrodes and the plurality of driving electrodes form a touch sensing region of the capacitive touchpad, and the touch sensing region is divided into a plurality of sensing units having same areas. Each of the LED dies is arranged in two adjacent ones of the plurality of sensing units, and a position of each of the LED dies corresponds to one of the plurality of driving electrodes, and the LED dies are electrically isolated from the plurality of sensing electrodes and the plurality of driving electrodes.
Abstract:
A pressure sensing unit is provided. The pressure sensing unit includes a membrane and a pressure sensing pad group. The membrane has a first surface and a second surface. The pressure sensing pad group includes a first pressure sensing pad, a second pressure sensing pad, and a ground pad that are spaced apart from one another. The ground pad and one among the first pressure sensing pad and the second pressure sensing pad are located at the first surface of the membrane, another one among the first pressure sensing pad and the second pressure sensing pad is located at the second surface of the membrane, and an orthographic projection of the ground pad projected onto a reference plane is located between orthographic projections of the first pressure sensing pad and the second pressure sensing pad that are projected onto the reference plane. Therefore, a signal-to-noise ratio can be increased and an erroneous detection can be prevented.
Abstract:
There is provided a touch force sensor including a first drive electrode, a second drive electrode and a receiving electrode. The first drive electrode is used to form a first capacitance with the receiving electrode. The second drive electrode is used to form a second capacitance with the receiving electrode. The receiving electrode shields the first drive electrode such that when a conductor approaches the receiving electrode, only the second capacitance is changed but the first capacitance is not changed. The first capacitance is changed only when the conductor gives a force upon the receiving electrode.
Abstract:
A lighting touchpad is provided, which includes a substrate module, a plurality of sensing electrodes, a plurality of driving electrodes, a plurality of light emitting diode (LED) chips mounted on the substrate module, and a controller. The driving electrodes and the sensing electrodes are formed on the substrate module and are respectively located at different height positions. The driving electrodes define a distribution space that extends along a normal direction of the substrate module. The LED dies are arranged in the distribution space. The controller is electrically coupled to the sensing electrodes, the driving electrodes, and the LED dies through the substrate module. When a coupling capacity is generated between a conductor and at least one of the sensing electrodes, the controller is configured to drive at least one of the LED dies adjacent to the at least one of the sensing electrodes to emit light.