Abstract:
In a method for manufacturing an aerogel, an acid is added to a first aqueous high-molar-ratio silicate solution that includes silica particles having a mean particle diameter of from 1 nm to 10 nm and that is alkaline, to produce a gel. The gel is subjected to a dehydration condensation to obtain a hydrogel. The hydrogel is converted into a hydrophobized gel. Then, the hydrophobized gel is dried. According to the method, an aerogel having a pore volume of from 3.00 cc/g to 10 cc/g, a mean pore diameter of from 10 nm to 68 nm, and a specific surface area of from 200 m2/g to 475 m2/g can be prepared.
Abstract:
Disclosed is an aerogel, having, on the surface of the aerogel, at least one type of dialkyldisiloxane bond serving as a hydrophobic group, and/or at least one type of crosslinked disiloxane bond serving as a hydrophobic group. Further disclosed is a material serving as at least one material selected from among a heat-insulation material, a sound-absorbing material, a water-repellant material, and an adsorption material, and this material includes the above-mentioned aerogel. Yet further disclosed is a method for producing the above-mentioned aerogel.
Abstract:
A composite sheet includes a graphite layer, a heat insulation layer including a fiber and a heat insulation material and a fiber layer located between the graphite layer and the heat insulation layer, wherein the fiber layer comprises the fiber. An electronic apparatus includes an electronic component that involves heat generation, a housing and the composite sheet, wherein the composite sheet is placed between the electronic component and the housing.