摘要:
A method and means is disclosed for continuously monitoring an optical fiber's attenuation or loss as it is being formed, which includes: a light source, which may be the heated fiber itself during drawing operations or an external source; passing the light through the fiber being produced; positioning the end of the fiber in a holder adjacent to a light detector, for example a photodiode with or without passing the transmitted light through a filter; detecting the light transmitted by the fiber from the light source; converting the detected light into an electrical equivalent signal; amplifying the signal if necessary and recording or observing the changes in the signal to determine an objective measure of the optical fiber's attenuating characteristic.
摘要:
A method of forming optical fibers in a continuous manufacturing process employs a heated mandrel with a predetermined taper at one end. Glass forming materials are applied to the mandrel by chemical vapor deposition along the taper to provide a corresponding glass concentration gradient along the taper. The molten glass materials are drawn in a continuous process without an intermediate preform stage.
摘要:
Optical communication fibers having improved fatigue resistance are provided by encapsulating the fibers in a water impervious material. The water impervious material prevents the interaction of water with glass along the fiber outer surface and prolongs the operational life-time of the fibers.
摘要:
A continuous optical fiber manufacturing process utilizes the method of chemical vapor deposition of the glass forming materials within an R.F. excited glow discharge. The rapid deposition rate within the discharge provides a sufficient stream of glass material for winding into a finished fiber on a synchronous take-up mechanism. Alternate embodiments include an oxygen air stream to remove dust particles from the fiber surface and an in-line fluorine stream to terminate surface bonding and reduce moisture attack on fiber surfaces.
摘要:
A method of producing a hollow core optical fiber comprises the steps of depositing a thermal buffer layer on the interior wall of a silica tube, depositing a film of germanium silicate cladding on said buffer layer, heating the composite structure so formed to its drawing temperature, and drawing the heated composite structure to form a hollow core optical fiber.
摘要:
A method for manufacturing hollow core optical fibers is disclosed comprising continuously feeding a glass rod of the desired cladding composition into a high temperature furnace with the rod in line contact with the inner surface of the glass tube. The glass transition temperature of the rod is substantially lower than the glass transition temperature of the glass tube. The glass rod composition is uniformly distributed on the glass tube inner wall as it enters the furnace hot zone. The ratio of the rod diameter to the glass tube inner diameter and the drawing temperature determine the coating thickness of the glass cladding on the inner surface of the glass tube. As the coated tube is passed through the furnace hot zone peak, the optical fiber is drawn. The rod and tube feed rate, the drawing temperature of the rod and glass tube and the drawing rate of the coated glass tube are selected to yield a hollow core optical fiber, with preselected interior and exterior diameters.
摘要:
The stress-induced birefringent single mode optical fiber includes an optical core having a high refractive index and a high thermal expansion coefficient. An arrangement formed from an optical material having a low refractive index and a low thermal expansion coefficient is disposed to engage the outer surface of the core tangentially at opposite ends of a diameter of the core to establish a stress therein. Air encompasses the remainder of the outer surface of the core to provide a light guiding cladding for the core and, hence, the fiber itself. The arrangement to establish the stress may include a pair of flat plates engaging the outer surface of the core tangentially which are entrapped in a circular tube which is concentric with the core such that air is entrapped between the plates and the circular tube to provide the light guiding cladding. Alternatively, an elliptical tube is provided to engage the outer surface of the core at the minor axis of the elliptical tube to provide the desired stress in the fiber. In this case air is enclosed in the elliptical tube to provide the light guiding cladding.
摘要:
High-strength optical preforms and optical fibers, particularly useful in light-wave communication systems, are fabricated by techniques producing high surface compressive forces in thin outer layers. These result in substantially increased fiber tensile strength, durability, and fiber life. High surface stresses are achieved in three-layer and four-layer preforms and fibers by employing particular combinations of core, cladding, and layer compositions, dopants, coefficients of thermal expansion, and glass transition temperatures.Various suitable manufacturing methods are disclosed using chemical vapor deposition techniques. For example, preforms may be fabricated by external deposition of layers on a drawn core-glass rod, or by internal CVD methods in which layers are sequentially deposited within hollow tubular silica substrates that are then collapsed into solid preforms by known techniques. In the internal deposition methods, preform finishing techniques are also disclosed for removing excess substrate material so as to leave a high-strength compressive layer of substantially pure silica.
摘要:
A method of fabricating a low loss single mode optical fiber having an elliptically shaped core comprising subjecting a multi-layered coated substrate having at least a barrier, cladding and core layer to partial collapse, first on one side and then on the other side, to produce an intermediate product having a substantially cross-sectional elliptical shape of at least the core layer. This is followed by collapsing the composite structure into a cylindrical shaped optical fiber preform having an elliptically shaped core portion which is then heated and drawn into a single mode optical fiber having an elliptically shaped core portion.
摘要:
A low loss multilayer optical fiber having good transmission propertiesin the infrared region of the spectrum is produced by depositing the core and cladding materials on the inner surface of a collapsible silica tube in the absence of moisture. A barrier layer is interposed between the silica tube and the cladding to prevent the migration of OH and transition metal ions during the tube collapsing and fiber drawing processes.