摘要:
The fatigue resistant optical fiber is fabricated by producing an optical fiber having an electrically conducting surface, heating the produced optical fiber, and coating the heated optical fiber with a material impervious to water and water vapor.
摘要:
An optical fiber or similar article is coated by directing the fiber through a spherical mixing vessel. Two silicone RTV components are directed by means of an annular feed mechanism into the mixing vessel at predetermined flow rates. The motion of the fiber directed through the vessel produces a churning or agitation of the silicone components to uniformly and homogeneously coat the fiber with the mixed components and provide a protective elastomeric coating about the fiber.
摘要:
Optical fiber anchors accomplishing low creep confinement or fixing of a section of optical fiber in an assembly compact enough to be used conveniently as an anchor or as an enabling part of a strain or temperature sensor while retaining low optical losses and the original buffer coating to prevent the fiber from being exposed to abrasion and other influences that could lead to breakage. A rigid body is used that is mechanically stiff and hard enough to prevent said fiber from cutting into it or distorting said medium or substrate when subjected to stress, even over a long period of years. Trapping can be accomplished by molding the bent fiber into the substrate or body, adhesively bonding or soldering the optical fiber into a confining curved groove in a body or substrate.
摘要:
A method for fabricating a fiber with optical cores of diameters between 2 to 20 microns is depicted. A first step includes the fabrication of a step-index preform of predetermined dimensions. The preform is drawn into a conventional fiber by conventional techniques resulting in a fiber having an outer diameter of about 120 microns or larger. The fiber is then emplaced in a glass tube. The tube is collapsed on the fiber by heating the same resulting in a second preform. This preform is again drawn into a fiber by conventional techniques to obtain a final fiber having core dimensions indicative of single mode operation with compatible outer diameters.
摘要:
Optical fibers of silica and plastic composition are rendered relatively stable to nuclear radiation induced optical losses by preirradiating with a high initial radiation dosage. Subsequent exposure of the radiation hardended fibers produce substantially lower radiation induced optical loss and faster fiber transmission recovery rates.
摘要:
A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.
摘要:
A process for making an optical fiber includes the steps of inserting a rod of the core glass composition into a closed tube made of the cladding glass. The diameter of the rod is substantially less than the inner diameter of the tube. The glass transition temperature of the core glass must be substantially lower than the glass transition temperature of the cladding and the rod is placed in contact with the tube along its entire length. When heat is applied to the lower portion of the rod and tube, the rod melts and forms a thin film on the inner surface of the tube which can rapidly be fined to a relatively pure glass. This melted glass forms a melt pool in the bottom of the tube, and the tube and pool can then be drawn into a fiber with the desired characteristics. A process for making a graded optical fiber utilizing a modified chemical vapor deposition process is also disclosed wherein a cladding glass is entrained on the inner surface of a tube substrate. A core rod is then inserted into the coated substrate tube. At the high drawing temperatures, ion exchange occurs between the core glass and the cladding glass to produce low loss graded optical fibers having an improved refractive index profile. Low loss, single mode optical fibers and single polarization guidance fibers can also be made by this method.
摘要:
A large optical preform is fabricated by rotating a platform about its axis while advancing the platform away from a series of nozzles. Each nozzle is arranged to generate an annular ring associated with the preform by a vapor phase oxidation technique. The vapor content introduced by each nozzle is tailored to provide a large diameter optical preform possessing step index, single mode or graded index capabilities. The preform thus produced is then drawn into elongated optical fiber cables having the above described properties.
摘要:
A method and means is disclosed for continuously monitoring an optical fiber's attenuation or loss as it is being formed, which includes: a light source, which may be the heated fiber itself during drawing operations or an external source; passing the light through the fiber being produced; positioning the end of the fiber in a holder adjacent to a light detector, for example a photodiode with or without passing the transmitted light through a filter; detecting the light transmitted by the fiber from the light source; converting the detected light into an electrical equivalent signal; amplifying the signal if necessary and recording or observing the changes in the signal to determine an objective measure of the optical fiber's attenuating characteristic.
摘要:
A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.