Abstract:
The method and apparatus permit analyses, by optical means, of properties of gaseous suspensions of particles, by measuring radiation that is emitted, transmitted or scattered by the particles. Determinations of composition, size, temperature and spectral emittance can be performed either in-situ or by sampling, and Fourier-transform infrared spectrometric techniques are most effectively used. Apparatus specifically adapted for performing radiation scattering analyses, and for collecting radiation from different sources, are provided.
Abstract:
A method and apparatus for determining the size distribution of certain particles, of a particular composition, such as iron sulfide (pyrites), in a sample of host material, such as coal. Data representative of the amount of at least one predetermined elemental constituent of the particles is obtained for each of numerous similarly-sized subsamples of the sample. The "constituent amount" data for each subsample is sorted into bins, each representative of a respective constituent amount range in a series of constituent amount ranges. Respective scaler representations of the fraction of the constituent amounts, represented by each bin range, are provided to yield an approximate representation of the distribution function of the amounts of the constituent in the subsamples of the coal. Those scaler representations collectively may provide a histogram. A selected multi-parameter distribution function, such as joint distribution function using both Gaussian and Poisson distributions, is fitted to the peaks of the binned grouping of representations forming the histogram, as by a least squares fitting technique, to obtain a best fit. The resulting values for two or more of the parameters of that function characterize the underlying size distribution of the certain particles in the sample. Three parameters include mean particle number density in the subsamples, mean particle radius which is a function of the mean normalized strength of the microprobe signal, and the variance in the radius.
Abstract:
A fault detection and classification system for wafer etching, tool cleaning, and other fabrication processes employs exhaust gas composition data from a Fourier transform infrared spectrometer in addition to machine-state and other process-state data. Process control may be initiated based upon the classification of a fault.
Abstract:
An implementation of sensor-driven run-to-run process control for semiconductor wafer fabrication integrates a robust, automated Fourier transform infrared reflectometer onto a wafer fabrication cluster tool. Cell controller software integrates an adaptive run-to-run controller, process tool recipe upload and download through a SECS port, sensor control, data archiving, and a graphical user interface.
Abstract:
A moving mirror interferometer consists of a back-to-back double mirror, operatively interposed in the paths of beams from a beamsplitter/parallel reflecting mirror combiner, and a corner cube retroreflector. One beam component from the combiner is directed toward the retroreflector, and arrives therefrom at one side of the double mirror rotated 180.degree. about its central axis; the other component from the combiner arrives at the opposite side of the double mirror without axial rotation. Alignment in the interferometer is insensitive to shearing or tilting of the optical components; the components may be semi-rigidly mounted for resilient deflection, so as to isolate them against distortion of the supporting structure, and dynamic beam path-length variation may optimally be produced by moving the corner cube retroreflector, the back-to-back double mirror, or both.
Abstract:
The method and apparatus of the invention permit in situ determinations to be made of the temperature and optical constants of a substrate surface that is being treated, by measurements of radiance, reflectance and transmittance. These determinations in turn provide, at any given instant during processing, compositional and other information, thereby affording highly effective feedback control of the processing conditions. The apparatus comprises an integrated, small and relatively inexpensive instrument for process monitoring.
Abstract:
A two-beam interferometer for Fourier spectroscopy comprises one or two reflecting channels, each having at least one relatively movable wall to vary the path length of a beam traversing the same. A beam passing through the channel makes multiple reflections therewithin, impinges upon a retroreflector, and is transferred back through the channel along the same path to recombine with a second beam, which can be similarly reflected. The multiple reflections that occur within the channel allow a large total path length change to be accomplished with a small degree of motion of the movable wall, to thereby achieve high levels of resolution.