摘要:
A method for a method for operating a multi-cell power supply having an integrated bypass assembly. According to various embodiments, the method includes detecting a failure in a power cell of the power supply, temporarily placing each of the power cells in a non-conducting state, and determining whether any current is flowing in the failed power cell. The method also includes bypassing the failed power cell after it has been determined that no current is flowing in the failed power cell, and placing the non-failed power cells back in a conducting state.
摘要:
A system. The system includes a multi-winding device having a primary winding and a plurality of three-phase secondary windings, and a plurality of power cells. Each power cell is connected to a different three-phase secondary winding of the multi-winding device. The system also includes a first contact connected to a first input terminal of at least one of the power cells, a second contact connected to a second input terminal of the at least one of the power cells, and a third contact connected to first and second output terminals of the at least one of the power cells.
摘要:
A power supply having one or more power electronic modules that may be replaced without shutting down the power supply. Each power electronic module may be enclosed in a separate compartment of the power supply. Each compartment may have stationary electrical connectors configured to electrically connect to the power electronic module. A racking mechanism connected to a handle outside the compartment may move a power electronic module out of electrical contact with the stationary electrical connectors and/or into electrical contact with the stationary electrical connectors. Movement of a power electronic module within the compartment may occur without shutting down the power supply. Methods of replacing power electronic modules without shutting down the power supply are also provided, as are other aspects.
摘要:
A system for cooling a multi-cell power supply, the system including a water pump, a water-to-air heat exchanger in fluid communication with the water pump, and a supply water manifold in fluid connection with the water-to-air-heat exchanger. The system further includes a plurality of power cells in fluid communication with the supply water manifold via one or more water hoses, and a multi-winding device in fluid communication with the plurality of power cells via at least one water-cooled bus, wherein the at least one water cooled bus electrically connects the power cells to secondary windings of the multi-winding device. The water-cooled buses provide both electrical current as well as cooling fluid to each winding of the multi-winding device, thereby eliminating a need for separate cooling and power connections.
摘要:
A magnetically latching solenoid and method of determining a position of a plunger contained therein. The solenoid includes a frame, a plunger configured to move through the frame between a first stable position and a second stable position, and at least one magnet mounted near the center of the frame such that a first and second magnetic fields are produced by the magnet through the frame and the plunger, wherein each of the first and second magnetic fields drive a separate portion of the frame into magnetic saturation depending on the position of the plunger. The solenoid also includes a first and second sensors mounted on the frame at different locations configured to detect and measure the first and second magnetic fields. The detected and measured magnetic fields are then used to determine the position of the plunger in the solenoid.
摘要:
A signal isolating transformer may be arranged such that a first coil of the signal isolating transformer is located in a medium voltage compartment and a second coil of the signal isolating transformer is located external to the medium voltage compartment. The transformer spans an opening defined by a grounded wall to isolate faults in the medium voltage compartment.
摘要:
A method. The method includes determining that a failure has occurred in a power cell of a multi-cell power supply. The method also includes moving a part of a first contact which is connected to first and second output terminals of the power cell from a first position to a second position, moving a part of a second contact which is connected to a first input terminal of the power cell from a third position to a fourth position, and moving a part of a third contact which is connected to a second input terminal of the power cell from a fifth position to a sixth position.
摘要:
A system. The system includes a multi-winding device having a primary winding and a plurality of three-phase secondary windings, and a plurality of power cells. Each power cell is connected to a different three-phase secondary winding of the multi-winding device. The system also includes a first contact connected to a first input terminal of at least one of the power cells, a second contact connected to a second input terminal of the at least one of the power cells, and a third contact connected to first and second output terminals of the at least one of the power cells.
摘要:
A current sensor for measuring medium-voltage currents. The current sensor includes an input terminal configured to receive a current, an output terminal configured to transmit the current, a closed core made from a magnetic material and comprising a gap, at least one conductor operably connected to the input terminal and the output terminal and passing through the closed core, the at least one conductor sized to carry the current, and a molded case of solid dielectric material configured to encapsulate the closed core and the at least one conductor, wherein the gap and the terminals are not encapsulated by the molded case. The molded case is dimensioned such that internal and external spacings defined by the molded case are suitable for continuous operation with a medium voltage current as applied to the terminals and the at least one conductor while the core is at ground potential.
摘要:
A bypass device for bypassing a power cell of a multi-cell device. The bypass device includes a stationary portion of a first set of contacts connected to at least first and second output terminals of a power cell, a magnetically latching solenoid that, when energized, moves a moving portion of the first set of contacts from a first position to a second position or from the second position to the first position, and at least one added insulating material positioned between the solenoid and the first set of contacts, and configured to allow a voltage between the magnetically latching solenoid and the first and second output terminals of the power cell to exceed a voltage between said output terminals.