Abstract:
An in-line liquid filtration device useable for filtration of blood, blood products or the like includes a housing having an inlet port, an outlet port, at least one filter element disposed in the housing between the inlet port and outlet port so as to filter liquid which flows into the filtration device via the inlet port. The filter element divides the housing into a first chamber and a second chamber. The device allows gases to vent the filtration device through the outlet port. The means may include a flow deflector within the first chamber and/or the second chamber. The means may also include a channel, preferably spiral, within either the first chamber and/or second chamber. The filtration device allows air therein to be purged downstream into either an air collecting bag or into the blood receiving bag without the manipulation of the height of the filtration device or the blood receiving bag.
Abstract:
The filtration method involves processing biological liquid from an enclosed flexible supply bag to a filtration media within a processing system wherein the flow of biological liquid within the system is restricted to allow the biological liquid to back up above the level of a port located upstream within the system and preventing gas from entering into the processing system through the port by maintaining the level of biological liquid above the port until the flow of biological liquid from the flexible supply bag ceases. The system automatically allows gas to enter into the system through the port when the flow of biological liquid ceases thereby draining the biological liquid into a receiving bag. The flow may be restricted by a narrow cross-sectional area within the processing system and the port may be covered by a hydrophobic filter media.
Abstract:
A liquid filtration device useable for removing leukocytes from blood contains a first chamber which is in fluid flow relationship with a second chamber. Filtration elements separate the first chamber from the second chamber so that liquid flowing from the first chamber is filtered thereby prior to entry into the second chamber. A passage leads from the second chamber into the first chamber and a hydrophobic filter may be used to prevent liquid from the first chamber from flowing through the passage into the second chamber while allowing air to flow therethrough. An outlet is located in the second chamber, preferably at the bottom thereof. A second outlet may be located within the second chamber and may be placed in fluid flow relationship therewith by a conduit or the like.
Abstract:
The vacuum filtration device has a disposable filter funnel and a disposable filtrate receptacle. The funnel and receptacle are used with a reusable base that is connected to a vacuum source. When the receptacle and funnel are mounted on the base the vacuum is applied through a connecting passage to the receptacle to draw the filtrate from the funnel into the receptacle.
Abstract:
A flow diverter, vacuum control and tilting of the liquid filtering system are used alternatively or in conjunction to reduce foam production in a filtered liquid sample. A liquid filtering system includes an upper sample reservoir, a filter and a lower storage bottle. A vacuum is applied below the sample filter to draw sample liquid through the sample filter into the storage bottle. A flow diverter may be used to direct flow of the filtered liquid sample onto a sidewall of the storage bottle or guide flow to a bottom of the storage bottle. The vacuum may be regulated to reduce foaming. The liquid filtering system may be tilted to direct fluid to the sidewall of the lower storage bottle and reduce foaming.
Abstract:
A liquid filtering system and methods for filtering are disclosed. One embodiment of the system includes a filtering apparatus having a receiving receptacle coupled with an adapter. The adapter has an adapter port for receiving a vacuum and an interface for coupling with an output receptacle that receives filtered liquid from the filtering apparatus. The adapter is between the receiving receptacle and output receptacle when the output receptacle is coupled with the adapter interface. The system also includes a base having a substantially rigid housing containing an internal vacuum channel terminating at a base vacuum delivery port. The adapter is couplable with the base to connect the adapter port to the base vacuum delivery port.
Abstract:
A high capacity gravity feed filter for filtering blood and blood products or the like includes a body having an inlet port, an outlet port, two filter wells, at least one filter element disposed in each of said filter wells, between the inlet port and outlet port so as to filter liquid which flows into the filtration device via the inlet port. The filter elements divide each of said filter wells into a first chamber and a second chamber. The device allows gases to vent the filtration device through the outlet port. The means may include a vertical channel within each of said second chambers. The filtration device allows air therein to be purged downstream into a receiving blood bag without the manipulation of the height of the filtration device or the receiving blood bag.
Abstract:
An in-line gravity filtration device for biological fluids such as blood or blood products is disclosed. The device includes a series of channels formed downstream of filtration elements. The channels are defined in cross sectional area by the distance between the filtration elements and their bottoms. The channels are configured to form flow paths to an outlet port so that air within the channels is forced downstream through the outlet port thereby minimizing air being trapped on the downstream side of the device. For optimum performance, the cross section area of a single continuous channel, or the sum of the cross sectional area of parallel channels, leading to a single outlet port, should not exceed the cross sectional area of the outlet port.
Abstract:
The vacuum filtration device has a disposable filter funnel and a disposable filtrate receptacle. The funnel and receptacle are used with a reusable base that is connected to a vacuum source. When the receptacle and funnel are mounted on the base the vacuum is applied through a connecting passage to the receptacle to draw the filtrate from the funnel into the receptacle.
Abstract:
A filtration device for separating filtrate and concentrate from a solution may contain a variable dead stop feature. The apparatus includes a housing with a means for collecting filtrate and a multiple sided filter unit insertable within the housing. The filter unit contains a semipermeable membrane thereon for separating filtrate from concentrate and a means for directing filtrate to a discharge within the housing. The apparatus also contains a means for preventing concentrate within the housing from escaping through the discharge opening of the housing.