-
11.
公开(公告)号:US20200248867A1
公开(公告)日:2020-08-06
申请号:US16726169
申请日:2019-12-23
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , CHONGQING UNIVERSITY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD
Inventor: Changhe Li , Zhenjing Duan , Huajun Cao , Xuefeng Xu , Naiqing Zhang , Lan Dong , Yanbin Zhang , Xiufang Bai , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
Abstract: The present invention relates to a device for recovering, separating and purifying oil mist in a minimum quantity lubricant (MQL) grinding process, comprising: an air separating mechanism, which comprises a pipeline and a fan fixedly connected with one end of the pipeline, wherein the fan is used for forming negative pressure in the pipeline, at least, one conical filter mesh mechanism is arranged in the pipeline, and a tip of the conical filter mesh mechanism faces one side of an air inlet direction of the pipeline; and a filtering and recovering mechanism, which is connected with the pipeline and comprises a tank body, a filtering mechanism and a recovering mechanism, wherein the tank body is connected with the pipeline by a connecting part, and the filtering mechanism is connected with the recovering mechanism.
-
公开(公告)号:US11890781B2
公开(公告)日:2024-02-06
申请号:US17280062
申请日:2020-02-06
Inventor: Changhe Li , Mingcun Shi , Xiangyang Ma , Yanbin Zhang , Min Yang , Xin Cui , Xiaohong Ma , Teng Gao , Xiaoming Wang , Yali Hou , Han Zhai , Zhen Wang , Bingheng Lu , Huajun Cao , Naiqing Zhang , Qidong Wu
CPC classification number: B28B3/025 , B28B13/0235 , B28B17/0081
Abstract: An alumina ceramic integrated hot press molding machine and working method thereof, including a pressing and hot pressing device fixed accordingly on a rack, a stirring device inside the hot pressing device, and a hot pressing mold above the hot pressing device; the pressing device enables one path of high-pressure air to act on the mold, and enables the other path to enter the hot pressing device, so the slurry flows into a cavity of the mold; the stirring device stirs the slurry inside the device, so alumina blanks are more evenly distributed therein; and temperature detection components for detecting the temperature of internal oil and the slurry at a slurry outlet are inside the hot pressing device, and the power of an electric heating device is adjusted and controlled in real time according to the temperature detected by the components, to achieve the purpose of accurate temperature control.
-
公开(公告)号:US11819932B2
公开(公告)日:2023-11-21
申请号:US17406746
申请日:2021-08-19
Applicant: Qingdao University of Technology , Shanghai Jinzhao Energy Saving Technology Co., Ltd. , Shaanxi Jinzhao Aviation Technology Co., Ltd.
Inventor: Changhe Li , Xifeng Wu , Yixue Han , Naiqing Zhang , Qidong Wu , Huajun Cao , Teng Gao , Yanbin Zhang , Min Yang , Bingheng Lu , Yuying Yang , Xin Cui , Xufeng Zhao , Mingzheng Liu , Dongzhou Jia , Xiaowei Zhang , Hao Ma
IPC: B23C5/28
CPC classification number: B23C5/28 , B23C2250/12
Abstract: An intelligent switching system for switching internal cooling and external cooling and a method are provided. The system includes a vision system, a cooling system and a control system. The vision system monitors a real-time milling state of a cutter, collects a real-time milling depth image that the cutter mills a workpiece, and transmits the collected real-time milling depth image to the control system. The control system includes a lubrication mode control center, and a motor control center. The lubrication mode control center receives the real-time image transmitted by the image collection control center; analyzes and processes the real-time image to obtain real-time milling depth data of the cutter. The motor control center receives a signal sent by the lubrication mode control center; analyzes and processes the signal, and transmits a control instruction to the cooling system. The cooling system executes a switching command issued by the control system.
-
14.
公开(公告)号:US11752584B2
公开(公告)日:2023-09-12
申请号:US17829421
申请日:2022-06-01
Inventor: Changhe Li , Dewei Liu , Zongming Zhou , Naiqing Zhang , Bo Liu , Shubham Sharma , Wenfeng Ding , Zechen Zhang
CPC classification number: B23Q7/046 , B23Q7/043 , B25J15/0658 , B23Q2707/003 , B23Q2707/04
Abstract: Provided a full-automatic wheel hub feeding-blanking system for intelligent production line of automotive wheel hubs, comprising: an intelligent material rack and a robot; the intelligent material rack comprises a bracket assembly, a turntable assembly and a bearing seat assembly; the turntable assembly being rotatable is mounted on the bearing seat assembly; the bracket assembly mounted on the turntable assembly comprises a base provided with at least one group of lifting devices, and each the group comprises three the lifting devices, and each of which an automotive wheel hub supporting plate assembly is provided on, central axis of the three automotive wheel hub supporting plate assemblies forming the angle of 120 degrees; the robot being mounted on one side of the intelligent material rack and comprises a robotic arm, and a manipulator is mounted on the robotic arm, and the manipulator is used for clamping the automotive wheel hub.
-
15.
公开(公告)号:US11628530B2
公开(公告)日:2023-04-18
申请号:US17549439
申请日:2021-12-13
Inventor: Changhe Li , Zhuang Shi , Aiguo Qin , Bo Liu , Yun Chen , Huajun Cao , Zongming Zhou , Naiqing Zhang , Qidong Wu , Bingheng Lu , Teng Gao , Yanbin Zhang , Min Yang , Mingzheng Liu , Xiaoming Wang
Abstract: The present invention discloses a positioning system with an adjustable clamping force and a milling equipment for a rail transit honeycomb workpiece. The positioning system includes: a positioning apparatus, including a positioning table to support a workpiece; and a clamping apparatus, including a turntable, where the turntable is fixedly disposed on a periphery of the positioning table, a top of the turntable is connected to a mechanical arm, a pressure plate is disposed at an end of the mechanical arm, and the pressure plate is capable of cooperating with the positioning table to clamp the workpiece, where there are a plurality of clamping apparatuses, working regions of adjacent clamping apparatuses have an intersection, and working regions of all the clamping apparatuses are capable of covering a machining surface of the workpiece; and when machining is performed in an intersection region, a clamping apparatus corresponding to the region clamps the workpiece, and when machining is performed in a non-intersection region, a clamping apparatus corresponding to the region dodges, and an adjacent clamping apparatus clamps the workpiece.
-
16.
公开(公告)号:US11441729B2
公开(公告)日:2022-09-13
申请号:US16726169
申请日:2019-12-23
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , CHONGQING UNIVERSITY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD
Inventor: Changhe Li , Zhenjing Duan , Huajun Cao , Xuefeng Xu , Naiqing Zhang , Lan Dong , Yanbin Zhang , Xiufang Bai , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
Abstract: The present invention relates to a device for recovering, separating and purifying oil mist in a minimum quantity lubricant (MQL) grinding process, comprising: an air separating mechanism, which comprises a pipeline and a fan fixedly connected with one end of the pipeline, wherein the fan is used for forming negative pressure in the pipeline, at least one conical filter mesh mechanism is arranged in the pipeline, and a tip of the conical filter mesh mechanism faces one side of an air inlet direction of the pipeline; and a filtering and recovering mechanism, which is connected with the pipeline and comprises a tank body, a filtering mechanism and a recovering mechanism, wherein the tank body is connected with the pipeline by a connecting part, and the filtering mechanism is connected with the recovering mechanism.
-
公开(公告)号:US11161210B2
公开(公告)日:2021-11-02
申请号:US16683550
申请日:2019-11-14
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , CHONGQING UNIVERSITY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD
Inventor: Changhe Li , Qingan Yin , Yanbin Zhang , Huajun Cao , Zhenjing Duan , Cong Mao , Wenfeng Ding , Naiqing Zhang , Lan Dong , Xiufang Bai , Menghua Sui , Yonghong Liu , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
Abstract: The disclosure provides a milling system and method under different lubrication conditions. The system uses a tool to mill the workpiece, a force measuring system to measure the milling force, a tool change system to replace the tools, a tool storage to store the tools. It can store the tools, provide the lubricating oil to the milling surface, select different tools according to different processing conditions, select the best angle differences of the unequal spiral angle tools according to different conditions comprising dry cutting, casting-type lubrication, minimal quantities of lubrication or minimal quantities of nanofluid lubrication, and/or choose the optimal tool according to different cutting parameters in order to obtain the minimum milling force.
-
公开(公告)号:US11084136B2
公开(公告)日:2021-08-10
申请号:US16683605
申请日:2019-11-14
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , CHONGQING UNIVERSITY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD
Inventor: Changhe Li , Qingan Yin , Huajun Cao , Yonghong Liu , Wenfeng Ding , Naiqing Zhang , Lan Dong , Zhenjing Duan , Yanbin Zhang , Xiufang Bai , Menghua Sui , Wentao Wu , Gao Teng , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
Abstract: The disclosure provides a method and system for milling injected cutting fluid under different working conditions. By analyzing influence of airflow fields in a milling area under different working conditions on injection of cutting fluid, an influence rule of a helical angle and a rotation speed of a cutter on the flow field is quantitatively analyzed, an optimal target distance of a nozzle, an angle between the nozzle and a milling cutter feeding direction and an angle between the nozzle and the surface of a workpiece are comprehensively determined, the nozzle is set according to a determined setting manner, and lubricating oil is sprayed to the milling area by utilizing the nozzle.
-
公开(公告)号:US11938653B2
公开(公告)日:2024-03-26
申请号:US17282211
申请日:2020-05-08
Inventor: Changhe Li , Mingcun Shi , Xiangyang Ma , Baoda Xing , Xiaohong Ma , Yanbin Zhang , Min Yang , Xin Cui , Teng Gao , Xiaoming Wang , Yali Hou , Han Zhai , Zhen Wang , Bingheng Lu , Huajun Cao , Naiqing Zhang , Qidong Wu
CPC classification number: B28B7/0097 , B28B7/10
Abstract: The present invention relates to a powder dry-pressing molding device and method. The powder dry-pressing molding device includes a rack, the rack is provided with an first pressure mechanism, a workbench mechanism and a second pressure mechanism in sequence along an up-and-down direction, and one side of the workbench mechanism is provided with a scraping mechanism; the first pressure mechanism includes an upper slide block capable of moving up and down, and an upper punch is disposed at a bottom of the upper slide block; the workbench mechanism includes a middle mold seat, a workbench is fixed above the middle mold seat, a middle mold is disposed inside the middle mold seat, and a mandrel runs through the inside of the middle mold; the second pressure mechanism includes a lower slide block capable of moving up and down, a lower punch is fixed at the top end of the lower slide block, and the lower punch is capable of extending into a compacting space between the mandrel and the middle mold; and the scraping mechanism includes a pusher connected with a scraping driving mechanism and capable of moving along the workbench, the pusher is provided with a feeding channel capable of being communicated with the compacting space, and the feeding channel is capable of being communicated with a barrel disposed on the rack. The dry-pressing molding device of the present invention has a high degree of automation, can scrape the powder, and has a good processing effect.
-
公开(公告)号:US11897165B2
公开(公告)日:2024-02-13
申请号:US17281895
申请日:2019-10-30
Inventor: Changhe Li , Baoteng Huang , Han Zhai , Bingheng Lu , Huajun Cao , Zhen Wang , Naiqing Zhang , Min Yang , Yanbin Zhang , Yali Hou , Runze Li , Xin Cui , Mingzheng Liu , Teng Gao , Xiaoming Wang
CPC classification number: B28B5/021 , B28B7/36 , B28B11/243 , C09K3/1409
Abstract: A production line of a CA abrasive, including: a belt mold, the belt mold being provided with a cavity; a transmission device, configured to drive the belt mold to run; a slurry coating mechanism, configured to coat a slurry on a surface and into the cavity of the belt mold; a slurry scraping mechanism, configured to scrap the slurry coated on the surface of the belt mold into the cavity; a drying mechanism, configured to dry the belt mold so that the slurry is dried and precipitated into abrasive grains; a separation mechanism, arranged below the drying mechanism and configured to shake down the abrasive grains in the cavity of the belt mold by vibrating; a sweeping mechanism, configured to sweep slurry fragments of the belt mold after separation; and a release agent coating mechanism, configured to spray a release agent to the swept belt mold.
-
-
-
-
-
-
-
-
-