Abstract:
A computing device may be configured to work in conjunction with another component (e.g., a server) to better determine whether a software application is benign or non-benign. This may be accomplished via the server performing static and/or dynamic analysis operations, generating a behavior information structure that describes or characterizes the range of correct or expected behaviors of the software application, and sending the behavior information structure to a computing device. The computing device may compare the received behavior information structure to a locally generated behavior information structure to determining whether the observed behavior of the software application differs or deviates from the expected behavior of the software application or whether the observed behavior is within the range of expected behaviors. The computing device may increase its level of security/scrutiny when the behavior information structure does not match the local behavior information structure.
Abstract:
A first time software is loaded for execution by a device, the software stored in non-secure storage is authenticated. Authenticating the software may involve a cryptographic operation over the software and a digital signature of the software. A verification tag may be generated for the software if authentication of the software is successful, the verification tag based on the software and at least a device-specific secret data. The verification tag may be stored within the device. Each subsequent time the software is loaded for execution it may be verified (not authenticated) by using the verification tag to confirm that the software being loaded is the same as the one used to generate the verification tag while avoiding authentication of the software.
Abstract:
The embodiments include methods and systems for detecting advertising fraud in a computing device by monitoring information received in a receiver component of the computing device, monitoring information received in a render component of the computing device, comparing the information received in the receiver component to the information received in the render component to generate comparison results, using the comparison results to determine whether there are discrepancies between the received information and the rendered information, and performing fraud prevention operations in response to determine that there are discrepancies between the received information and the rendered information. The fraud prevention operations may include dropping a connection to cease receiving the information in the receiver component, sending negative or position feedback to the service provider or a security server, and performing other similar operations.
Abstract:
A method, apparatus, and system are provided for implementing resource and/or location-based matching services between a wireless terminal (e.g., mobile phone) user and one or more resources. A novel infrastructure supports resource and/or location based matching services over a wireless network. A back-end system includes a database, server, and match engine that are configured match a user with one or more resources based on the user's characteristics, preferences, and/or location. Such resources include (1) other users, (2) targeted advertising, (3) businesses/networking opportunities, and/or (4) locate a nearby service or store. A flexible database architecture supports application-specific resources which facilitate the deployment of various matching services. Application developers are thus able to implement different resource-matching applications for wireless devices through a common back-end infrastructure. Additionally, the match engine may include a feedback mechanism that permits the match engine to learn a user's preferences.
Abstract:
A system and method for providing a location based service to create a social network, comprising activating a feature from a wireless terminal, registering from the wireless terminal with a location based service associated with the feature, creating a profile of a user of the feature, and displaying candidates based on the profile and based on the geographic location of the candidates. A Global Positioning System (GPS) may be used to geographically locate active users of a feature. An activity map may be associated with a feature, the activity map displaying active users of the feature.
Abstract:
A behavior-based security system of a computing device may be protected from non-benign behavior, malware, and cyber attacks by configuring the device to work in conjunction with another component (e.g., a server) to monitor the accuracy and performance of the security system, and determine whether the system is working correctly, efficiently, or as expected. This may be accomplished via the server generating artificial attack software, sending the generated artificial attack software to the mobile device to simulate non-benign behavior in the mobile device, such as a cyber attack, and determining whether the behavior-based security system of the mobile device responded adequately to the simulated non-benign behavior. The sever may send a dead-man signal to the mobile device in response to determining that the behavior-based security system of the mobile device did not respond adequately to the simulated non-benign behavior.
Abstract:
Systems and methods for switching between communicating according to a first network protocol and a second network protocol are provided. The provided systems and methods multiplex received communications according to the first and second network protocols and select one of the network protocols based on a quality or throughput of the network protocol without terminating any existing sessions established according to either of the first or second network protocols.
Abstract:
Reciprocal wireless connections may be established between a pair of devices to support failover, load balancing, traffic distribution, or other peer-to-peer connectivity features. Each device of a pair of devices may implement both a local wireless access point and a local wireless station to communicate with the other device of the pair of devices. Establishment of a second wireless connection between the pair of devices may be coordinated using a protocol extension of a first wireless connection. A multiplexing (MUX) component may coordinate traffic among the reciprocal wireless connections.
Abstract:
Embodiments disclosed allow authentication between two entities having agreed on the use of a common modulus N. The authentication includes generating a pseudorandom string value; generating a public key value based on the modulus N and the pseudorandom string value; generating a private key value corresponding to the public key value; receiving a verifier's public key value; generating a shared secret value based on the modulus N, the private key value and the verifier's public key value; calculating an authentication signature value using the shared secret value; and transmitting the authentication signature value for authentication. When the authentication signature is received, the public key value and the shared value are generated to calculate an authentication signature value. Thereafter, the authentication signature values are compared and authenticated.
Abstract:
Methods of using a peripheral component interconnect express (PCIe) device in a virtual environment are disclosed. Two operating systems operate on a primary device. One operating system acts as a guest in a virtual environment within the primary device. A peripheral device is coupled to the primary device through a wireless connection. In an exemplary embodiment, the wireless connection is a PCIe bridge. The host operating system interfaces directly with the memory elements and hardware of the primary device. The guest operating system interoperates with the memory elements and hardware of the peripheral device. The use of the PCIe wireless link allows the guest operating system to interface with the elements of the peripheral device with relatively little latency.